Home About us Contact | |||
CO2 Uptake (co2 + uptake)
Kinds of CO2 Uptake Terms modified by CO2 Uptake Selected AbstractsA test of the relationship between seasonal rainfall and saguaro cacti branching patternsECOGRAPHY, Issue 4 2003Taly Dawn Drezner Reproductive output, as well as photosynthetically active radiation interception and CO2 uptake, increase as saguaro cacti Carnegiea gigantea (Engelm.) Britt. and Rose branch, and branching increases with increasing moisture. The Sonoran Desert experiences distinct summer and winter precipitation regimes that vary in both geography and scale. Many aspects of saguaro ecology are known to depend on the summer rains, which has resulted in an emphasis on summer rains in the literature. Similarly, branching studies have been limited geographically to areas that receive relatively high amounts of summer rainfall. These studies, therefore, attribute branching patterns to the summer (or possibly annual) rains, and conclusions reflect the summer precipitation bias. Environmental variability in space was explored in the present study to investigate saguaro branching patterns. I collected height and branching data in thirty saguaro populations across their American range. Stepwise regression was used to determine which climate, vegetation and soil variables best predict branching. Contrary to the literature, this study found that winter precipitation, particularly from January to April, was the best predictor of branching, not summer or annual rain. Surprisingly, the relationship between the summer monsoons (July and August precipitation) and branching was negative. This is likely due to the fact that summer and winter rainfall patterns are geographically distinct. Winter precipitation appears to play a key role in branching, and thus in seed production. This suggests that saguaros benefit from moisture during the winter, possibly utilizing cold-season rains for increasing their reproductive output through branching, and challenging the view that the summer rains dominate virtually every aspect of the saguaro life-cycle, and creating a more balanced view of saguaro ecology. [source] Soil CO2 flux and photoautotrophic community composition in high-elevation, ,barren' soilENVIRONMENTAL MICROBIOLOGY, Issue 3 2009Kristen R. Freeman Summary Soil-dominated ecosystems, with little or no plant cover (i.e. deserts, polar regions, high-elevation areas and zones of glacial retreat), are often described as ,barren', despite their potential to host photoautotrophic microbial communities. In high-elevation, subnival zone soil (i.e. elevations higher than the zone of continuous vegetation), the structure and function of these photoautotrophic microbial communities remains essentially unknown. We measured soil CO2 flux at three sites (above 3600 m) and used molecular techniques to determine the composition and distribution of soil photoautotrophs in the Colorado Front Range. Soil CO2 flux data from 2002 and 2007 indicate that light-driven CO2 uptake occurred on most dates. A diverse community of Cyanobacteria, Chloroflexi and eukaryotic algae was present in the top 2 cm of the soil, whereas these clades were nearly absent in deeper soils (2,4 cm). Cyanobacterial communities were composed of lineages most closely related to Microcoleus vaginatus and Phormidium murrayi, eukaryotic photoautotrophs were dominated by green algae, and three novel clades of Chloroflexi were also abundant in the surface soil. During the light hours of the 2007 snow-free measurement period, CO2 uptake was conservatively estimated to be 23.7 g C m,2 season,1. Our study reveals that photoautotrophic microbial communities play an important role in the biogeochemical cycling of subnival zone soil. [source] Warming and depth interact to affect carbon dioxide concentration in aquatic mesocosmsFRESHWATER BIOLOGY, Issue 4 2008KYLA M. FLANAGAN Summary 1. Climate change may significantly influence lake carbon dynamics and consequently the exchange of CO2 with the atmosphere. Warming will accelerate multiple processes that either absorb or release CO2, making predicting the net effect of warming on CO2 exchange with the atmosphere difficult. Here we experimentally test how the CO2 flux of deep and shallow systems responds to warming. To do this, we conducted a greenhouse experiment using mesocosms of two depths, experiencing either ambient or warmed temperatures. 2. Deeper mesocosms were found to have a lower average CO2 concentration than shallower mesocosms under ambient temperature conditions. In addition, warming interacts with mesocosm depth to affect the average CO2 concentration; there was no effect of warming on the average CO2 concentration of deep mesocosms, but shallow mesocosms had significantly lower average CO2 concentrations when warmed. 3. The difference in CO2 concentration resulting from the depth manipulation was due to varying loss rates of particulate carbon to the sediments. There was a strong negative correlation between CO2 and sedimentation rates in the deep mesocosms suggesting that high particulate carbon loss to the sediments lowered the CO2 concentration in the water column. There was no correlation between CO2 and sedimentation rates observed for shallow mesocosms suggesting enhanced carbon regeneration from the sediments was maintaining higher CO2 concentrations in the water column. 4. Relationships between CO2 and algal concentrations indicate that the reduction in CO2 concentrations resulting from warming is due to increased per capita algal turnover rates depleting CO2 in the water column. Our results suggest that the carbon dynamics and CO2 flux of shallow systems will be affected more by climate warming than deep systems and the net effect of warming is to increase CO2 uptake. [source] CO2 uptake patterns depend on water current velocity and shoot morphology in submerged stream macrophytesFRESHWATER BIOLOGY, Issue 7 2006HANNE DALSGAARD NIELSEN Summary 1. The influence of current velocity on the pattern of photosynthetic CO2 uptake in three species of submerged stream macrophytes was described by analysing the grain density in autoradiographs of leaves exposed to 14CO2. 2. In Elodea canadensis, the CO2 uptake was approximately two-fold higher near the leaf periphery compared with the midrib section at high current velocity, whereas at low current velocity the area of relatively high CO2 uptake expanded from the leaf periphery towards the midrib and basal sections of the leaves. 3. In Potamogeton crispus and Callitriche stagnalis the CO2 uptake was uniform throughout the leaves at low current velocity, whereas at high current velocity the CO2 uptake appeared to increase randomly in some areas of the leaves. 4. The relationship between the photosynthetic CO2 uptake pattern and the dynamics of flow surrounding submerged shoots at low and high current velocity is discussed in relation to shoot morphology. In E. canadensis, thick diffusive boundary layers may develop between leaves because of screening effects at high current velocity. Increased diffusion path for CO2 may contribute to inhibitory effects on photosynthesis in this species. [source] Ecosystem CO2 exchange and plant biomass in the littoral zone of a boreal eutrophic lakeFRESHWATER BIOLOGY, Issue 8 2003T. Larmola Summary 1In order to study the dynamics of primary production and decomposition in the lake littoral, an interface zone between the pelagial, the catchment and the atmosphere, we measured ecosystem/atmosphere carbon dioxide (CO2) exchange in the littoral zone of an eutrophic boreal lake in Finland during two open water periods (1998,1999). We reconstructed the seasonal net CO2 exchange and identified the key factors controlling CO2 dynamics. The seasonal net ecosystem exchange (NEE) was related to the amount of carbon accumulated in plant biomass. 2In the continuously inundated zones, spatial and temporal variation in the density of aerial shoots controlled CO2 fluxes, but seasonal net exchange was in most cases close to zero. The lower flooded zone had a net CO2 uptake of 1.8,6.2 mol m,2 per open water period, but the upper flooded zone with the highest photosynthetic capacity and above-ground plant biomass, had a net CO2 loss of 1.1,7.1 mol m,2 per open water period as a result of the high respiration rate. The excess of respiration can be explained by decomposition of organic matter produced on site in previous years or leached from the catchment. 3Our results from the two study years suggest that changes in phenology and water level were the prime cause of the large interannual difference in NEE in the littoral zone. Thus, the littoral is a dynamic buffer and source for the load of allochthonous and autochthonous carbon to small lakes. [source] Carbon dioxide uptake, water relations and drought survival for Dudleya saxosa, the ,rock live-forever', growing in small soil volumesFUNCTIONAL ECOLOGY, Issue 4 2007P. S. NOBEL Summary 1Although many plants grow in rock crevices and other regions of small soil volume, including over 20 000 epiphytic and hemi-epiphytic species, analyses of the actual soil volume occupied, the water availability in that soil, the water-storage capacity in the shoots and underground organs, and the photosynthetic pathway utilized have rarely been combined. 2Dudleya saxosa (M.F. Jones) Britton and Rose (Crassulaceae), growing in the Sonoran Desert, has very shallow roots that occupied soil volumes averaging only 43 × 10,6 m3 per medium-sized plant. This volume of soil can hold about the same amount of water (10 g) as can be stored in the leaves, corm and roots combined (11 g), but at a sufficiently high water potential for transfer to the plant for less than 1 week after a substantial rainfall. 3About 80% of the net carbon dioxide uptake by D. saxosa over a 24-h period occurred during the daytime (C3) under wet conditions, the daily total decreasing by 34% and the pattern shifting to nocturnal net CO2 uptake (CAM) after 46 days' drought. Seventy-seven days' drought eliminated its daily net CO2 uptake. 4Stomatal frequency was only 67 mm,2 on the adaxial (upper) surface and twofold lower on the abaxial surface. The cuticle was thick, 34 µm for the adaxial surface. Leaves had 24 mesophyll cell layers, leading to a high mesophyll cell surface area per unit leaf area of 142. 5The three leaf anatomical features plus utilization of CAM increased net CO2 uptake per unit of water transpired, and helped D. saxosa thrive in a small soil volume, with the underground corm being a major supplier of water to the succulent leaves during 2.5 months of drought. The maximum water-holding capacity of the soil explored by the roots closely matched the maximum water-holding capacity of the plant, reflecting the conservative strategy used by D. saxosa in a stressful semi-arid environment. [source] Forced depression of leaf hydraulic conductance in situ: effects on the leaf gas exchange of forest treesFUNCTIONAL ECOLOGY, Issue 4 2007T. J. BRODRIBB Summary 1Recent work on the hydraulic conductance of leaves suggests that maximum photosynthetic performance of a leaf is defined largely by its plumbing. Pursuing this idea, we tested how the diurnal course of gas exchange of trees in a dry tropical forest was affected by artificially depressing the hydraulic conductance of leaves (Kleaf). 2Individual leaves from four tropical tree species were exposed to a brief episode of forced evaporation by blowing warm air over leaves in situ. Despite humid soil and atmospheric conditions, this caused leaf water potential (,leaf) to fall sufficiently to induce a 50,74% drop in Kleaf. 3Two of the species sampled proved highly sensitive to artificially depressed Kleaf, leading to a marked and sustained decline in the instantaneous rate of CO2 uptake, stomatal conductance and transpiration. Leaves of these species showed a depression of hydraulic and photosynthetic capacity in response to the ,blow-dry' treatment similar to that observed when major veins in the leaf were severed. 4By contrast, the other two species sampled were relatively insensitive to Kleaf manipulation; photosynthetic rates were indistinguishable from control (untreated) leaves 4 h after treatment. These insensitive species demonstrate a linear decline of Kleaf with ,leaf, while Kleaf in the two sensitive species falls precipitously at a critical water deficit. 5We propose that a sigmoidal Kleaf vulnerability enables a high diurnal yield of CO2 at the cost of exposing leaves to the possibility of xylem cavitation. Linear Kleaf vulnerability leads to a relatively lower CO2 yield, while providing better protection against cavitation. [source] Carbon dioxide assimilation by a wetland sedge canopy exposed to ambient and elevated CO2: measurements and model analysisFUNCTIONAL ECOLOGY, Issue 2 2003D. P. Rasse Summary 1The wetland sedge Scirpus olneyi Gray displays fast rates of CO2 assimilation and responds positively to increased atmospheric CO2 concentration. The present study was aimed at identifying the ecophysiological traits specific to S. olneyi that drive these CO2 -assimilation patterns under ambient and elevated CO2 conditions. 2The net ecosystem exchange (NEE) of CO2 between S. olneyi communities and the atmosphere was measured in open-top chambers. 3We developed a new mechanistic model for S. olneyi communities based on published ecophysiological data and additional measurements of photosynthetic parameters. 4Our NEE measurements confirmed that S. olneyi communities have a high rate of summertime CO2 assimilation, with noontime peaks reaching 40 µmol CO2 m,2 ground s,1 on productive summer days, and that elevated CO2 increased S. olneyi CO2 assimilation by c. 35,40%. 5Using S. olneyi -specific ecophysiological parameters, comparison with measured NEE showed that the model accurately simulated these high rates of CO2 uptake under ambient or elevated CO2. 6The model pointed to the Rubisco capacity of Scirpus leaves associated with their high total nitrogen content as the primary explanation for the high rates of CO2 assimilation, and indicated that the vertical-leaf canopy structure of S. olneyi had comparatively little influence on CO2 assimilation. [source] Atmospheric impact of bioenergy based on perennial crop (reed canary grass, Phalaris arundinaceae, L.) cultivation on a drained boreal organic soilGCB BIOENERGY, Issue 3 2010NARASINHA J. SHURPALI Abstract Marginal organic soils, abundant in the boreal region, are being increasingly used for bioenergy crop cultivation. Using long-term field experimental data on greenhouse gas (GHG) balance from a perennial bioenergy crop [reed canary grass (RCG), Phalaris arundinaceae L.] cultivated on a drained organic soil as an example, we show here for the first time that, with a proper cultivation and land-use practice, environmentally sound bioenergy production is possible on these problematic soil types. We performed a life cycle assessment (LCA) for RCG on this organic soil. We found that, on an average, this system produces 40% less CO2 -equivalents per MWh of energy in comparison with a conventional energy source such as coal. Climatic conditions regulating the RCG carbon exchange processes have a high impact on the benefits from this bioenergy production system. Under appropriate hydrological conditions, this system can even be carbon-negative. An LCA sensitivity analysis revealed that net ecosystem CO2 exchange and crop yield are the major LCA components, while non-CO2 GHG emissions and costs associated with crop production are the minor ones. Net bioenergy GHG emissions resulting from restricted net CO2 uptake and low crop yields, due to climatic and moisture stress during dry years, were comparable with coal emissions. However, net bioenergy emissions during wet years with high net uptake and crop yield were only a third of the coal emissions. As long-term experimental data on GHG balance of bioenergy production are scarce, scientific data stemming from field experiments are needed in shaping renewable energy source policies. [source] Carbon dioxide balance of a fen ecosystem in northern Finland under elevated UV-B radiationGLOBAL CHANGE BIOLOGY, Issue 4 2009JAANA K. HAAPALA Abstract The effect of elevated UV-B radiation on CO2 exchange of a natural flark fen was studied in open-field conditions during 2003,2005. The experimental site was located in Sodankylä in northern Finland (67°22,N, 26°38,E, 179 m a.s.l.). Altogether 30 study plots, each 120 cm × 120 cm in size, were randomly distributed between three treatments (n=10): ambient control, UV-A control and UV-B treatment. The UV-B-treated plots were exposed to elevated UV-B radiation level for three growing seasons. The instantaneous net ecosystem CO2 exchange (NEE) and dark respiration (RTOT) were measured during the growing season using a closed chamber method. The wintertime CO2 emissions were estimated using a gradient technique by analyzing the CO2 concentration in the snow pack. In addition to the instantaneous CO2 exchange, the seasonal CO2 balances during the growing seasons were modeled using environmental data measured at the site. In general, the instantaneous NEE at light saturation was slightly higher in the UV-B treatment compared with the ambient control, but the gross photosynthesis was unaffected by the exposure. The RTOT was significantly lower under elevated UV-B in the third study year. The modeled seasonal (June,September) CO2 balance varied between the years depending on the ground water level and temperature conditions. During the driest year, the seasonal CO2 balance was negative (net release of CO2) in the ambient control and the UV-B treatment was CO2 neutral. During the third year, the seasonal CO2 uptake was 43±36 g CO2 -C m,2 in the ambient control and 79±45 g CO2 -C m,2 in the UV-B treatment. The results suggest that the long-term exposure to high UV-B radiation levels may slightly increase the CO2 accumulation to fens resulting from a decrease in microbial activity in peat. However, it is unlikely that the predicted development of the level of UV-B radiation would significantly affect the CO2 balance of fen ecosystems in future. [source] Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystemGLOBAL CHANGE BIOLOGY, Issue 7 2008GEORG WOHLFAHRT Abstract The net ecosystem CO2 exchange (NEE) between a Mojave Desert ecosystem and the atmosphere was measured over the course of 2 years at the Mojave Global Change Facility (MGCF, Nevada, USA) using the eddy covariance method. The investigated desert ecosystem was a sink for CO2, taking up 102±67 and 110±70 g C m,2 during 2005 and 2006, respectively. A comprehensive uncertainty analysis showed that most of the uncertainty of the inferred sink strength was due to the need to account for the effects of air density fluctuations on CO2 densities measured with an open-path infrared gas analyser. In order to keep this uncertainty within acceptable bounds, highest standards with regard to maintenance of instrumentation and flux measurement postprocessing have to be met. Most of the variability in half-hourly NEE was explained by the amount of incident photosynthetically active radiation (PAR). On a seasonal scale, PAR and soil water content were the most important determinants of NEE. Precipitation events resulted in an initial pulse of CO2 to the atmosphere, temporarily reducing NEE or even causing it to switch sign. During summer, when soil moisture was low, a lag of 3,4 days was observed before the correlation between NEE and precipitation switched from positive to negative, as opposed to conditions of high soil water availability in spring, when this transition occurred within the same day the rain took place. Our results indicate that desert ecosystem CO2 exchange may be playing a much larger role in global carbon cycling and in modulating atmospheric CO2 levels than previously assumed , especially since arid and semiarid biomes make up >30% of Earth's land surface. [source] Estimates of CO2 uptake and release among European forests based on eddy covariance dataGLOBAL CHANGE BIOLOGY, Issue 9 2004Albert I. J. M. Van Dijk Abstract The net ecosystem exchange (NEE) of forests represents the balance of gross primary productivity (GPP) and respiration (R). Methods to estimate these two components from eddy covariance flux measurements are usually based on a functional relationship between respiration and temperature that is calibrated for night-time (respiration) fluxes and subsequently extrapolated using daytime temperature measurements. However, respiration fluxes originate from different parts of the ecosystem, each of which experiences its own course of temperature. Moreover, if the temperature,respiration function is fitted to combined data from different stages of biological development or seasons, a spurious temperature effect may be included that will lead to overestimation of the direct effect of temperature and therefore to overestimates of daytime respiration. We used the EUROFLUX eddy covariance data set for 15 European forests and pooled data per site, month and for conditions of low and sufficient soil moisture, respectively. We found that using air temperature (measured above the canopy) rather than soil temperature (measured 5 cm below the surface) yielded the most reliable and consistent exponential (Q10) temperature,respiration relationship. A fundamental difference in air temperature-based Q10 values for different sites, times of year or soil moisture conditions could not be established; all were in the range 1.6,2.5. However, base respiration (R0, i.e. respiration rate scaled to 0°C) did vary significantly among sites and over the course of the year, with increased base respiration rates during the growing season. We used the overall mean Q10 of 2.0 to estimate annual GPP and R. Testing suggested that the uncertainty in total GPP and R associated with the method of separation was generally well within 15%. For the sites investigated, we found a positive relationship between GPP and R, indicating that there is a latitudinal trend in NEE because the absolute decrease in GPP towards the pole is greater than in R. [source] The contribution of bryophytes to the carbon exchange for a temperate rainforestGLOBAL CHANGE BIOLOGY, Issue 8 2003Evan H. DeLucia Abstract Bryophytes blanket the floor of temperate rainforests in New Zealand and may influence a number of important ecosystem processes, including carbon cycling. Their contribution to forest floor carbon exchange was determined in a mature, undisturbed podocarp-broadleaved forest in New Zealand, dominated by 100,400-year-old rimu (Dacrydium cupressimum) trees. Eight species of mosses and 13 species of liverworts contributed to the 62% cover of the diverse forest floor community. The bryophyte community developed a relatively thin (depth <30 mm), but dense, canopy that experienced elevated CO2 partial pressures (median 46.6 Pa immediately below the bryophyte canopy) relative to the surrounding air (median 37.6 Pa at 100 mm above the canopy). Light-saturated rates of net CO2 exchange from 14 microcosms collected from the forest floor were highly variable; the maximum rate of net uptake (bryophyte photosynthesis , whole-plant respiration) per unit ground area at saturating irradiance was 1.9 ,mol m,2 s,1 and in one microcosm, the net rate of CO2 exchange was negative (respiration). CO2 exchange for all microcosms was strongly dependent on water content. The average water content in the microcosms ranged from 1375% when fully saturated to 250% when air-dried. Reduction in water content across this range resulted in an average decrease of 85% in net CO2 uptake per unit ground area. The results from the microcosms were used in a model to estimate annual carbon exchange for the forest floor. This model incorporated hourly variability in average irradiance reaching the forest floor, water content of the bryophyte layer, and air and soil temperature. The annual net carbon uptake by forest floor bryophytes was 103 g m,2, compared to annual carbon efflux from the forest floor (bryophyte and soil respiration) of ,1010 g m,2. To put this in perspective of the magnitude of the components of CO2 exchange for the forest floor, the bryophyte layer reclaimed an amount of CO2 equivalent to only about 10% of forest floor respiration (bryophyte plus soil) or ,11% of soil respiration. The contribution of forest floor bryophytes to productivity in this temperate rainforest was much smaller than in boreal forests, possibly because of differences in species composition and environmental limitations to photosynthesis. Because of their close dependence on water table depth, the contribution of the bryophyte community to ecosystem CO2 exchange may be highly responsive to rapid changes in climate. [source] Leaf Epidermal Hydathodes and the Ecophysiological Consequences of Foliar Water Uptake in Species of Crassula from the Namib Desert in Southern AfricaPLANT BIOLOGY, Issue 2 2000C. E. Martin Abstract: Epidermal hydathodes were found on leaves of 46 of 48 species of Crassula collected from the Namib Desert in southern Africa. The possibility that these structures might allow the absorption of surface water was investigated in 27 species (including subspecies). The presence of hydathodes on leaf epidermi correlated, in most cases, with increases in leaf thickness and enhanced rates of nocturnal, and sometimes diurnal, CO2 uptake following wetting of the leaves during the night. The precise nature of these responses varied depending on the species. In addition, wetting only the older leaves on the lower portion of the shoot of C. tetragona ssp. acutifolia not only resulted in increased thickness of these leaves, but also effected an increase in leaf thickness and stimulation of CO2 uptake rates in the distal, younger portion of the shoot that was not wetted. Overall, foliar hydathodes were implicated in the absorption of surface water in many species of Crassula such that the ecophysiology of these desert succulents was positively affected. Although rainfall in the Namib Desert is infrequent, surface wetting of the leaves is a more common occurrence as a result of nighttime dew or fog deposition. Presumably, species with hydathodes benefit directly from this source of moisture. These findings have important implications in understanding a relatively unexplored adaptation of some xerophytes to an extremely arid environment. [source] Is a short, sharp shock equivalent to long-term punishment?PLANT CELL & ENVIRONMENT, Issue 4 2009Contrasting the spatial pattern of acute, chronic ozone damage to soybean leaves via chlorophyll fluorescence imaging ABSTRACT Experimental investigations of ozone (O3) effects on plants have commonly used short, acute [O3] exposure (>100 ppb, on the order of hours), while in field crops damage is more likely caused by chronic exposure (<100 ppb, on the order of weeks). How different are the O3 effects induced by these two fumigation regimes? The leaf-level photosynthetic response of soybean to acute [O3] (400 ppb, 6 h) and chronic [O3] (90 ppb, 8 h d,1, 28 d) was contrasted via simultaneous in vivo measurements of chlorophyll a fluorescence imaging (CFI) and gas exchange. Both exposure regimes lowered leaf photosynthetic CO2 uptake about 40% and photosystem II (PSII) efficiency (Fq,/Fm,) by 20% compared with controls, but this decrease was far more spatially heterogeneous in the acute treatment. Decline in Fq,/Fm, in the acute treatment resulted equally from decreases in the maximum efficiency of PSII (Fv,/Fm,) and the proportion of open PSII centres (Fq,/Fv,), but in the chronic treatment decline in Fq,/Fm, resulted only from decrease in Fq,/Fv,. Findings suggest that acute and chronic [O3] exposures do not induce identical mechanisms of O3 damage within the leaf, and using one fumigation method alone is not sufficient for understanding the full range of mechanisms of O3 damage to photosynthetic production in the field. [source] Hydathodal leaf teeth of Chloranthus japonicus (Chloranthaceae) prevent guttation-induced flooding of the mesophyllPLANT CELL & ENVIRONMENT, Issue 9 2005TAYLOR S. FEILD ABSTRACT Why the leaves of cold temperate deciduous and moisture-loving angiosperms are so often toothed has long puzzled biologists because the functional consequences of teeth remain poorly understood. Here we provide functional and structural evidence that marginal leaf teeth of Chloranthus japonicus, an understory herb, enable the release of guttation sap during root pressure. When guttation from teeth hydathodes was experimentally blocked, we found that the leaf intercellular airspaces became flooded. Measurements of chlorophyll a fluorescence revealed that internal flooding resulted in an inhibition of photosynthesis, most likely through the formation of a film of water within the leaf that reduced CO2 diffusion. Comparing a developmental series of leaves with and without teeth experimentally covered with wax, we found that teeth did not affect overall leaf stomatal conductance and CO2 uptake. However, maximal and effective light-saturation PSII quantum yields of teeth were found to be lower or equal to the surrounding lamina throughout leaf ontogeny. Collectively, our results suggest hydathodes and their development on teeth apices enable the avoidance of mesophyll flooding by root pressure. We discuss how these new findings bear on the potential physiological interpretations of models that apply leaf marginal traits to infer ancient climates. [source] Extension of a biochemical model for the generalized stoichiometry of electron transport limited C3 photosynthesisPLANT CELL & ENVIRONMENT, Issue 10 2004X. YIN ABSTRACT The widely used steady-state model of Farquhar et al. (Planta 149: 78,90, 1980) for C3 photosynthesis was developed on the basis of linear whole-chain (non-cyclic) electron transport. In this model, calculation of the RuBP-regeneration limited CO2 -assimilation rate depends on whether it is insufficient ATP or NADPH that causes electron transport limitation. A new, generalized equation that allows co-limitation of NADPH and ATP on electron transport is presented herein. The model is based on the assumption that other thylakoid pathways (the Q-cycle, cyclic photophosphorylation, and pseudocyclic electron transport) interplay with the linear chain to co-contribute to a balanced production of NADPH and ATP as required by stromal metabolism. The original model assuming linear electron transport limited either by NADPH or by ATP, predicts quantum yields for CO2 uptake that represent the highest and the lowest values, respectively, of the range given by the new equation. The applicability of the new equation is illustrated for a number of C3 crop species, by curve fitting to gas exchange data in the literature. In comparison with the original model, the new model enables analysis of photosynthetic regulation via the electron transport pathways in response to environmental stresses. [source] Would transformation of C3 crop plants with foreign Rubisco increase productivity?PLANT CELL & ENVIRONMENT, Issue 2 2004A computational analysis extrapolating from kinetic properties to canopy photosynthesis ABSTRACT Genetic modification of Rubisco to increase the specificity for CO2 relative to O2 (,) would decrease photorespiration and in principle should increase crop productivity. When the kinetic properties of Rubisco from different photosynthetic organisms are compared, it appears that forms with high , have low maximum catalytic rates of carboxylation per active site (kcc). If it is assumed that an inverse relationship between kcc and , exists, as implied from measurements, and that an increased concentration of Rubisco per unit leaf area is not possible, will increasing , result in increased leaf and canopy photosynthesis? A steady-state biochemical model for leaf photosynthesis was coupled to a canopy biophysical microclimate model and used to explore this question. C3 photosynthetic CO2 uptake rate (A) is either limited by the maximum rate of Rubisco activity (Vcmax) or by the rate of regeneration of ribulose-1,5-bisphosphate, in turn determined by the rate of whole chain electron transport (J). Thus, if J is limiting, an increase in , will increase net CO2 uptake because more products of the electron transport chain will be partitioned away from photorespiration into photosynthesis. The effect of an increase in , on Rubisco-limited photosynthesis depends on both kcc and the concentration of CO2 ([CO2]). Assuming a strict inverse relationship between kcc and ,, the simulations showed that a decrease, not an increase, in , increases Rubisco-limited photosynthesis at the current atmospheric [CO2], but the increase is observed only in high light. In crop canopies, significant amounts of both light-limited and light-saturated photosynthesis contribute to total crop carbon gain. For canopies, the present average , found in C3 terrestrial plants is supra-optimal for the present atmospheric [CO2] of 370 µmol mol,1, but would be optimal for a CO2 concentration of around 200 µmol mol,1, a value close to the average of the last 400 000 years. Replacing the average Rubisco of terrestrial C3 plants with one having a lower and optimal , would increase canopy carbon gain by 3%. Because there are significant deviations from the strict inverse relationship between kcc and ,, the canopy model was also used to compare the rates of canopy photosynthesis for several Rubiscos with well-defined kinetic constants. These simulations suggest that very substantial increases (> 25%) in crop carbon gain could result if specific Rubiscos having either a higher , or higher kcc were successfully expressed in C3 plants. [source] How does photorespiration modulate leaf amino acid contents?PLANT CELL & ENVIRONMENT, Issue 7 2002A dual approach through modelling, metabolite analysis Abstract The aim of this work was to establish the quantitative impact of photorespiration on leaf amino acid contents. Attached leaves of wheat and potato were incubated for 30,40 min under defined conditions in which net CO2 uptake (A) was manipulated by irradiance, ambient CO2 or ambient O2. The incubated portion of the leaf was sampled by a rapid-quench method and photorespiratory flux (vo) was modelled from the measured rate of net CO2 uptake. In both wheat and potato, the ratio between glycine and serine showed a strong positive correlation with vo. Aspartate and alanine correlated negatively with vo but glutamate and glutamine showed less clear relationships. In potato, glutamate and glutamine did not correlate clearly with either A or vo. In wheat, glutamine showed a general increase with A but no relationship with vo, whereas 2-oxoglutarate contents correlated positively with vo and negatively with A. As a result, glutamine : glutamate and glutamine : 2-oxoglutarate increased with net CO2 uptake in wheat, observations that are attributed primarily to imperfect and variable coupling between the supply of NH3 in primary nitrogen assimilation and the associated delivery of 2-oxoglutarate to the chloroplast. A simple theoretical analysis is used to illustrate the potentially marked impact of primary nitrogen assimilation on leaf glutamine, even against a background of high rates of photorespiratory ammonia recycling. [source] Responses of CAM species to increasing atmospheric CO2 concentrationsPLANT CELL & ENVIRONMENT, Issue 8 2000P. M. Drennan ABSTRACT Crassulacean acid metabolism (CAM) species show an average increase in biomass productivity of 35% in response to a doubled atmospheric CO2 concentration. Daily net CO2 uptake is similarly enhanced, reflecting in part an increase in chlorenchyma thickness and accompanied by an even greater increase in water-use efficiency. The responses of net CO2 uptake in CAM species to increasing atmospheric CO2 concentrations are similar to those for C3 species and much greater than those for C4 species. Increases in net daily CO2 uptake by CAM plants under elevated atmospheric CO2 concentrations reflect increases in both Rubisco-mediated daytime CO2 uptake and phosphoenolpyruvate carboxylase (PEPCase)-mediated night-time CO2 uptake, the latter resulting in increased nocturnal malate accumulation. Chlorophyll contents and the activities of Rubisco and PEPCase decrease under elevated atmospheric CO2, but the activated percentage for Rubisco increases and the KM(HCO3,) for PEPCase decreases, resulting in more efficient photosynthesis. Increases in root:shoot ratios and the formation of additional photosynthetic organs, together with increases in sucrose-Pi synthase and starch synthase activity in these organs under elevated atmospheric CO2 concentrations, decrease the potential feedback inhibition of photosynthesis. Longer-term studies for several CAM species show no downward acclimatization of photosynthesis in response to elevated atmospheric CO2 concentrations. With increasing temperature and drought duration, the percentage enhancement of daily net CO2 uptake caused by elevated atmospheric CO2 concentrations increases. Thus net CO2 uptake, productivity, and the potential area for cultivation of CAM species will be enhanced by the increasing atmospheric CO2 concentrations and the increasing temperatures associated with global climate change. [source] Effects of a 60 Hz magnetic field on photosynthetic CO2 uptake and early growth of radish seedlingsBIOELECTROMAGNETICS, Issue 8 2004Akira Yano Abstract Photosynthetic CO2 uptake rate and early growth parameters of radish Raphanus sativus L. seedlings exposed to an extremely low frequency magnetic field (ELF MF) were investigated. Radish seedlings were exposed to a 60 Hz, 50 ,Trms (root mean square) sinusoidal magnetic field (MF) and a parallel 48 ,T static MF for 6 or 15 d immediately after germination. Control seedlings were exposed to the ambient MF but not the ELF MF. The CO2 uptake rate of ELF MF exposed seedlings on day 5 and later was lower than that of the control seedlings. The dry weight and the cotyledon area of ELF MF exposed seedlings on day 6 and the fresh weight, the dry weight and the leaf area of ELF MF exposed seedlings on day 15 were significantly lower than those of the control seedlings, respectively. In another experiment, radish seedlings were grown without ELF MF exposure for 14 d immediately after germination, and then exposed to the ELF MF for about 2 h, and the photosynthetic CO2 uptake rate was measured during the short term ELF MF exposure. The CO2 uptake rate of the same seedlings was subsequently measured in the ambient MF (control) without the ELF MF. There was no difference in the CO2 uptake rate of seedlings exposed to the ELF MF or the ambient MF. These results indicate that continuous exposure to 60 Hz, 50 ,Trms sinusoidal MF with a parallel 48 ,T static MF affects the early growth of radish seedlings, but the effect is not so severe that modification of photosynthetic CO2 uptake can be observed during short term MF exposure. Bioelectromagnetics 25:572,581, 2004. © 2004 Wiley-Liss, Inc. [source] |