Home About us Contact | |||
CO2 Losses (co2 + loss)
Selected AbstractsEcosystem CO2 exchange and plant biomass in the littoral zone of a boreal eutrophic lakeFRESHWATER BIOLOGY, Issue 8 2003T. Larmola Summary 1In order to study the dynamics of primary production and decomposition in the lake littoral, an interface zone between the pelagial, the catchment and the atmosphere, we measured ecosystem/atmosphere carbon dioxide (CO2) exchange in the littoral zone of an eutrophic boreal lake in Finland during two open water periods (1998,1999). We reconstructed the seasonal net CO2 exchange and identified the key factors controlling CO2 dynamics. The seasonal net ecosystem exchange (NEE) was related to the amount of carbon accumulated in plant biomass. 2In the continuously inundated zones, spatial and temporal variation in the density of aerial shoots controlled CO2 fluxes, but seasonal net exchange was in most cases close to zero. The lower flooded zone had a net CO2 uptake of 1.8,6.2 mol m,2 per open water period, but the upper flooded zone with the highest photosynthetic capacity and above-ground plant biomass, had a net CO2 loss of 1.1,7.1 mol m,2 per open water period as a result of the high respiration rate. The excess of respiration can be explained by decomposition of organic matter produced on site in previous years or leached from the catchment. 3Our results from the two study years suggest that changes in phenology and water level were the prime cause of the large interannual difference in NEE in the littoral zone. Thus, the littoral is a dynamic buffer and source for the load of allochthonous and autochthonous carbon to small lakes. [source] Trade-offs in low-light CO2 exchange: a component of variation in shade tolerance among cold temperate tree seedlingsFUNCTIONAL ECOLOGY, Issue 2 2000M. B. Walters Abstract 1.,Does enhanced whole-plant CO2 exchange in moderately low to high light occur at the cost of greater CO2 loss rates at very-low light levels? We examined this question for first-year seedlings of intolerant Populus tremuloides and Betula papyrifera, intermediate Betula alleghaniensis, and tolerant Ostrya virginiana and Acer saccharum grown in moderately low (7·3% of open-sky) and low (2·8%) light. We predicted that, compared with shade-tolerant species, intolerant species would have characteristics leading to greater whole-plant CO2 exchange rates in moderately low to high light levels, and to higher CO2 loss rates at very-low light levels. 2.,Compared with shade-tolerant A. saccharum, less-tolerant species grown in both light treatments had greater mass-based photosynthetic rates, leaf, stem and root respiration rates, leaf mass:plant mass ratios and leaf area:leaf mass ratios, and similar whole-plant light compensation points and leaf-based quantum yields. 3.,Whole-plant CO2 exchange responses to light (0·3,600 µmol quanta m,2 s,1) indicated that intolerant species had more positive CO2 exchange rates at all but very-low light (< 15 µmol quanta m,2 s,1). In contrast, although tolerant A. saccharum had a net CO2 exchange disadvantage at light > 15 µmol quanta m,2 s,1, its lower respiration resulted in lower CO2 losses than other species at light < 15 µmol quanta m,2 s,1. 4.,Growth scaled closely with whole-plant CO2 exchange characteristics and especially with integrated whole-plant photosynthesis (i.e. leaf mass ratio × in situ leaf photosynthesis). In contrast, growth scaled poorly with leaf-level quantum yield, light compensation point, and light-saturated photosynthetic rate. 5.,Collectively these patterns indicated that: (a) no species was able to both minimize CO2 loss at very-low light (i.e. < 15 µmol quanta m,2 s,1) and maximize CO2 gain at higher light (i.e. > 15 µmol quanta m,2 s,1), because whole-plant respiration rates were positively associated with whole-plant photosynthesis at higher light; (b) shade-intolerant species possess traits that maximize whole-plant CO2 exchange (and thus growth) in moderately low to high light levels, but these traits may lead to long-term growth and survival disadvantages in very-low light (< 2·8%) owing, in part, to high respiration. In contrast, shade-tolerant species may minimize CO2 losses in very-low light at the expense of maximizing CO2 gain potential at higher light levels, but to the possible benefit of long-term survival in low light. [source] Maintenance costs of serotiny do not explain weak serotinyAUSTRAL ECOLOGY, Issue 6 2009M. D. CRAMER Abstract Considerable variation in the duration of serotiny exists among species of both Australian and South African Proteaceae. ,Weak' serotiny (pre-fire loss after <3 years) could be dictated by the costs (water or carbon) of cone/fruit retention or by benefits accruing from pre-fire seed establishment. We determined that cones/fruits of a range of Australian and south western Cape Proteaceae species (Leucadendron xanthoconus, Aulax umbellata, L. linifolium, L. gandogeri, Hakea drupacea, H. sericea) are not sealed dead wood, but that they continuously lose H2O and CO2. Water loss from cones/fruits was poorly controlled, occurring in both light and dark. The rates of both H2O and CO2 loss from mature cones/fruits were negatively correlated with the degree of serotiny (r2 = 0.59 and 0.18, respectively, P < 0.001 both). However, the amounts of H2O and CO2 lost per weight were small relative to the fluxes from leaves (13,29% for H2O and 3,10% for CO2). The [N] and [P] in the cones/fruits and seeds was substantial. Despite 25% of N and 38% of P being recovered from the cones/fruits following maturation, the loss of the cones/fruits and seeds would still incur a substantial nutrient cost. The seed [P] was positively correlated with the degree of serotiny (r2 = 0.24, P = 0.001). We suggest that maintenance costs (water and carbon) of serotiny, although exceeding those of soil stored seeds, are relatively low. The correlation between the degree of serotiny and seed [P] indicates that stronger serotiny is required, much like sclerophylly, for survival under low nutrient availability in frequently burnt vegetation. [source] Respiratory carbon loss of calcareous grasslands in winter shows no effects of 4 years' CO2 enrichmentFUNCTIONAL ECOLOGY, Issue 2 2002M. Volk Summary 1CO2 exchange measurements in long-term CO2 -enrichment experiments suggest large net carbon gains by ecosystems during the growing season that are not accounted for by above-ground plant biomass. Considerable amounts of C might therefore be allocated below ground. 2Winter ecosystem respiration from temperate grasslands under elevated CO2 may account for the loss of a significant part of the extra C gained during the growing season. To test this hypothesis, dark respiration was assessed throughout the winter of the fourth year of CO2 enrichment in a calcareous grassland. 3Using these data, a model was parameterized to estimate whole-winter respiratory CO2 losses. From November to February, 154 9 g C m,2 were respired under elevated CO2 and 144 5 g C m,2 under ambient [CO2], with no significant difference between the CO2 treatments. 4We conclude that (i) wintertime respiration does not constitute a larger C loss from the ecosystem at elevated CO2; and (ii) the absence of respiratory responses implies no extra growing-season C inputs with month-to-year turnover times at elevated CO2. [source] Trade-offs in low-light CO2 exchange: a component of variation in shade tolerance among cold temperate tree seedlingsFUNCTIONAL ECOLOGY, Issue 2 2000M. B. Walters Abstract 1.,Does enhanced whole-plant CO2 exchange in moderately low to high light occur at the cost of greater CO2 loss rates at very-low light levels? We examined this question for first-year seedlings of intolerant Populus tremuloides and Betula papyrifera, intermediate Betula alleghaniensis, and tolerant Ostrya virginiana and Acer saccharum grown in moderately low (7·3% of open-sky) and low (2·8%) light. We predicted that, compared with shade-tolerant species, intolerant species would have characteristics leading to greater whole-plant CO2 exchange rates in moderately low to high light levels, and to higher CO2 loss rates at very-low light levels. 2.,Compared with shade-tolerant A. saccharum, less-tolerant species grown in both light treatments had greater mass-based photosynthetic rates, leaf, stem and root respiration rates, leaf mass:plant mass ratios and leaf area:leaf mass ratios, and similar whole-plant light compensation points and leaf-based quantum yields. 3.,Whole-plant CO2 exchange responses to light (0·3,600 µmol quanta m,2 s,1) indicated that intolerant species had more positive CO2 exchange rates at all but very-low light (< 15 µmol quanta m,2 s,1). In contrast, although tolerant A. saccharum had a net CO2 exchange disadvantage at light > 15 µmol quanta m,2 s,1, its lower respiration resulted in lower CO2 losses than other species at light < 15 µmol quanta m,2 s,1. 4.,Growth scaled closely with whole-plant CO2 exchange characteristics and especially with integrated whole-plant photosynthesis (i.e. leaf mass ratio × in situ leaf photosynthesis). In contrast, growth scaled poorly with leaf-level quantum yield, light compensation point, and light-saturated photosynthetic rate. 5.,Collectively these patterns indicated that: (a) no species was able to both minimize CO2 loss at very-low light (i.e. < 15 µmol quanta m,2 s,1) and maximize CO2 gain at higher light (i.e. > 15 µmol quanta m,2 s,1), because whole-plant respiration rates were positively associated with whole-plant photosynthesis at higher light; (b) shade-intolerant species possess traits that maximize whole-plant CO2 exchange (and thus growth) in moderately low to high light levels, but these traits may lead to long-term growth and survival disadvantages in very-low light (< 2·8%) owing, in part, to high respiration. In contrast, shade-tolerant species may minimize CO2 losses in very-low light at the expense of maximizing CO2 gain potential at higher light levels, but to the possible benefit of long-term survival in low light. [source] Photodegradation leads to increased carbon dioxide losses from terrestrial organic matterGLOBAL CHANGE BIOLOGY, Issue 11 2010SUSANNA RUTLEDGE Abstract CO2 production in terrestrial ecosystems is generally assumed to be solely biologically driven while the role of abiotic processes has been largely overlooked. In addition to microbial decomposition, photodegradation , the direct breakdown of organic matter (OM) by solar irradiance , has been found to contribute to litter mass loss in dry ecosystems. Previous small-scale studies have shown that litter degradation by irradiance is accompanied by emissions of CO2. However, the contribution of photodegradation to total CO2 losses at ecosystems scales is unknown. This study determined the proportion of the total CO2 losses caused by photodegradation in two ecosystems: a bare peatland in New Zealand and a seasonally dry grassland in California. The direct effect of solar irradiance on CO2 production was examined by comparing daytime CO2 fluxes measured using eddy covariance (EC) systems with simultaneous measurements made using an opaque chamber and the soil CO2 gradient technique, and with night-time EC measurements under the same soil temperature and moisture conditions. In addition, a transparent chamber was used to directly measure CO2 fluxes from OM caused by solar irradiance. Photodegradation contributed 19% of the annual CO2 flux from the peatland and almost 60% of the dry season CO2 flux from the grassland, and up to 62% and 92% of the summer mid-day CO2 fluxes, respectively. Our results suggest that photodegradation may be important in a wide range of ecosystems with exposed OM. Furthermore, the practice of partitioning daytime ecosystem CO2 exchange into its gross components by assuming that total daytime CO2 losses can be approximated using estimates of biological respiration alone may be in error. To obtain robust estimates of global ecosystem,atmosphere carbon transfers, the contribution of photodegradation to OM decomposition must be quantified for other ecosystems and the results incorporated into coupled carbon,climate models. [source] The European carbon balance.GLOBAL CHANGE BIOLOGY, Issue 5 2010Part 2: croplands Abstract We estimated the long-term carbon balance [net biome production (NBP)] of European (EU-25) croplands and its component fluxes, over the last two decades. Net primary production (NPP) estimates, from different data sources ranged between 490 and 846 gC m,2 yr,1, and mostly reflect uncertainties in allocation, and in cropland area when using yield statistics. Inventories of soil C change over arable lands may be the most reliable source of information on NBP, but inventories lack full and harmonized coverage of EU-25. From a compilation of inventories we infer a mean loss of soil C amounting to 17 g m,2 yr,1. In addition, three process-based models, driven by historical climate and evolving agricultural technology, estimate a small sink of 15 g C m,2 yr,1 or a small source of 7.6 g C m,2 yr,1. Neither the soil C inventory data, nor the process model results support the previous European-scale NBP estimate by Janssens and colleagues of a large soil C loss of 90 ± 50 gC m,2 yr,1. Discrepancy between measured and modeled NBP is caused by erosion which is not inventoried, and the burning of harvest residues which is not modeled. When correcting the inventory NBP for the erosion flux, and the modeled NBP for agricultural fire losses, the discrepancy is reduced, and cropland NBP ranges between ,8.3 ± 13 and ,13 ± 33 g C m,2 yr,1 from the mean of the models and inventories, respectively. The mean nitrous oxide (N2O) flux estimates ranges between 32 and 37 g C Eq m,2 yr,1, which nearly doubles the CO2 losses. European croplands act as small CH4 sink of 3.3 g C Eq m,2 yr,1. Considering ecosystem CO2, N2O and CH4 fluxes provides for the net greenhouse gas balance a net source of 42,47 g C Eq m,2 yr,1. Intensifying agriculture in Eastern Europe to the same level Western Europe amounts is expected to result in a near doubling of the N2O emissions in Eastern Europe. N2O emissions will then become the main source of concern for the impact of European agriculture on climate. [source] |