Home About us Contact | |||
CO2 Exchange Rates (co2 + exchange_rate)
Selected AbstractsRespiratory Q10 of marigold (Tagetes patula) in response to long-term temperature differences and its relationship to growth and maintenance respirationPHYSIOLOGIA PLANTARUM, Issue 2 2006Marc W. Van Iersel Acclimation of respiration to temperature is not well understood. To determine whether whole plant respiration responses to long-term temperature treatments can be described using the Q10 concept, the CO2 exchange rate of marigolds (Tagetes patula L. ,Queen Sophia'), grown at 20°C or 30°C, was measured for 62 days. When plants of the same age were compared, plants grown at 20°C consistently had a higher specific respiration (Rspc) than plants grown at 30°C (long-term Q10= 0.71,0.97). This was due to a combination of greater dry mass at 30°C and a decrease in Rspc with increasing mass. When plants of the same dry mass were compared, the long-term Q10 was 1.35,1.55; i.e. Rspc was higher at 30°C than at 20°C. Whole plant respiration could be accurately described by dividing respiration into growth and maintenance components. The maintenance respiration coefficient was higher at 30°C than at 20°C, while the growth respiration coefficient was lower at 30°C, partly because of temperature-dependent changes in plant composition. These results suggest difficulties with interpreting temperature effects on whole plant respiration, because conclusions depend greatly on whether plants of the same age or mass are compared. These difficulties can be minimized by describing whole plant respiration on the basis of growth and maintenance components. [source] Trade-offs in low-light CO2 exchange: a component of variation in shade tolerance among cold temperate tree seedlingsFUNCTIONAL ECOLOGY, Issue 2 2000M. B. Walters Abstract 1.,Does enhanced whole-plant CO2 exchange in moderately low to high light occur at the cost of greater CO2 loss rates at very-low light levels? We examined this question for first-year seedlings of intolerant Populus tremuloides and Betula papyrifera, intermediate Betula alleghaniensis, and tolerant Ostrya virginiana and Acer saccharum grown in moderately low (7·3% of open-sky) and low (2·8%) light. We predicted that, compared with shade-tolerant species, intolerant species would have characteristics leading to greater whole-plant CO2 exchange rates in moderately low to high light levels, and to higher CO2 loss rates at very-low light levels. 2.,Compared with shade-tolerant A. saccharum, less-tolerant species grown in both light treatments had greater mass-based photosynthetic rates, leaf, stem and root respiration rates, leaf mass:plant mass ratios and leaf area:leaf mass ratios, and similar whole-plant light compensation points and leaf-based quantum yields. 3.,Whole-plant CO2 exchange responses to light (0·3,600 µmol quanta m,2 s,1) indicated that intolerant species had more positive CO2 exchange rates at all but very-low light (< 15 µmol quanta m,2 s,1). In contrast, although tolerant A. saccharum had a net CO2 exchange disadvantage at light > 15 µmol quanta m,2 s,1, its lower respiration resulted in lower CO2 losses than other species at light < 15 µmol quanta m,2 s,1. 4.,Growth scaled closely with whole-plant CO2 exchange characteristics and especially with integrated whole-plant photosynthesis (i.e. leaf mass ratio × in situ leaf photosynthesis). In contrast, growth scaled poorly with leaf-level quantum yield, light compensation point, and light-saturated photosynthetic rate. 5.,Collectively these patterns indicated that: (a) no species was able to both minimize CO2 loss at very-low light (i.e. < 15 µmol quanta m,2 s,1) and maximize CO2 gain at higher light (i.e. > 15 µmol quanta m,2 s,1), because whole-plant respiration rates were positively associated with whole-plant photosynthesis at higher light; (b) shade-intolerant species possess traits that maximize whole-plant CO2 exchange (and thus growth) in moderately low to high light levels, but these traits may lead to long-term growth and survival disadvantages in very-low light (< 2·8%) owing, in part, to high respiration. In contrast, shade-tolerant species may minimize CO2 losses in very-low light at the expense of maximizing CO2 gain potential at higher light levels, but to the possible benefit of long-term survival in low light. [source] CO2 exchange in three Canadian High Arctic ecosystems: response to long-term experimental warmingGLOBAL CHANGE BIOLOGY, Issue 12 2004Jeffrey M. Welker Abstract Carbon dioxide exchange, soil C and N, leaf mineral nutrition and leaf carbon isotope discrimination (LCID-,) were measured in three High Arctic tundra ecosystems over 2 years under ambient and long-term (9 years) warmed (,2°C) conditions. These ecosystems are located at Alexandra Fiord (79°N) on Ellesmere Island, Nunavut, and span a soil water gradient; dry, mesic, and wet tundra. Growing season CO2 fluxes (i.e., net ecosystem exchange (NEE), gross ecosystem photosynthesis (GEP), and ecosystem respiration (Re)) were measured using an infrared gas analyzer and winter C losses were estimated by chemical absorption. All three tundra ecosystems lost CO2 to the atmosphere during the winter, ranging from 7 to 12 g CO2 -C m,2 season,1 being highest in the wet tundra. The period during the growing season when mesic tundra switch from being a CO2 source to a CO2 sink was increased by 2 weeks because of warming and increases in GEP. Warming during the summer stimulated dry tundra GEP more than Re and thus, NEE was consistently greater under warmed as opposed to ambient temperatures. In mesic tundra, warming stimulated GEP with no effect on Re increasing NEE by ,10%, especially in the first half of the summer. During the ,70 days growing season (mid-June,mid-August), the dry and wet tundra ecosystems were net CO2 -C sinks (30 and 67 g C m,2 season,1, respectively) and the mesic ecosystem was a net C source (58 g C m,2 season,1) to the atmosphere under ambient temperature conditions, due in part to unusual glacier melt water flooding that occurred in the mesic tundra. Experimental warming during the growing season increased net C uptake by ,12% in dry tundra, but reduced net C uptake by ,20% in wet tundra primarily because of greater rates of Re as opposed to lower rates of GEP. Mesic tundra responded to long-term warming with ,30% increase in GEP with almost no change in Re reducing this tundra type to a slight C source (17 g C m,2 season,1). Warming caused LCID of Dryas integrafolia plants to be higher in dry tundra and lower in Salix arctic plants in mesic and wet tundra. Our findings indicate that: (1) High Arctic ecosystems, which occur in similar mesoclimates, have different net CO2 exchange rates with the atmosphere; (2) long-term warming can increase the net CO2 exchange of High Arctic tundra by stimulating GEP, but it can also reduce net CO2 exchange in some tundra types during the summer by stimulating Re to a greater degree than stimulating GEP; (3) after 9 years of experimental warming, increases in soil carbon and nitrogen are detectable, in part, because of increases in deciduous shrub cover, biomass, and leaf litter inputs; (4) dry tundra increases in GEP, in response to long-term warming, is reflected in D. integrifolia LCID; and (5) the differential carbon exchange responses of dry, mesic, and wet tundra to similar warming magnitudes appear to depend, in part, on the hydrologic (soil water) conditions. Annual net ecosystem CO2 -C exchange rates ranged from losses of 64 g C m,2 yr,1 to gains of 55 g C m,2 yr,1. These magnitudes of positive NEE are close to the estimates of NPP for these tundra types in Alexandra Fiord and in other High Arctic locations based on destructive harvests. [source] High rates of net ecosystem carbon assimilation by Brachiara pasture in the Brazilian CerradoGLOBAL CHANGE BIOLOGY, Issue 5 2004Alexandre J.B. Santos Abstract To investigate the consequences of land use on carbon and energy exchanges between the ecosystem and atmosphere, we measured CO2 and water vapour fluxes over an introduced Brachiara brizantha pasture located in the Cerrado region of Central Brazil. Measurements using eddy covariance technique were carried out in field campaigns during the wet and dry seasons. Midday CO2 net ecosystem exchange rates during the wet season were ,40 ,mol m,2 s,1, which is more than twice the rate found in the dry season (,15 ,mol m,2 s,1). This was observed despite similar magnitudes of irradiance, air and soil temperatures. During the wet season, inferred rates of canopy photosynthesis did not show any tendency to saturate at high solar radiation levels, with rates of around 50 ,mol m,2 s,1 being observed at the maximum incoming photon flux densities of 2200 ,mol m,2 s,1. This contrasted strongly to the dry period when light saturation occurred with 1500 ,mol m,2 s,1 and with maximum canopy photosynthetic rates of only 20 ,mol m,2 s,1. Both canopy photosynthetic rates and night-time ecosystem CO2 efflux rates were much greater than has been observed for cerrado native vegetation in both the wet and dry seasons. Indeed, observed CO2 exchange rates were also much greater than has previously been reported for C4 pastures in the tropics. The high rates in the wet season may have been attributable, at least in part, to the pasture not being grazed. Higher than expected net rates of carbon acquisition during the dry season may also have been attributable to some early rain events. Nevertheless, the present study demonstrates that well-managed, productive tropical pastures can attain ecosystem gas exchange rates equivalent to fertilized C4 crops growing in the temperate zone. [source] |