Class II Region (class + ii_region)

Distribution by Scientific Domains

Selected Abstracts

Further characterization of MHC haplotypes demonstrates conservation telomeric of HLA-A: update of the 4AOH and 10IHW cell panels

S. K. Cattley
Cell panels have been used extensively in studies of polymorphism and disease associations within the major histocompatibility complex (MHC), but the results from these panels require continuous updates with the increasing availability of novel data. We present here an updated table of the typings of the 10IHW and 4AOH panels. Local data included are HFE, HERV-K(C4) and six microsatellites telomeric of HLA-A. Typings for class I, MICA (PERB11.1), MICB (PERB11.2), XA, XB, LMP2 and 10 microsatellites reported by others have also been consolidated in this table. The tabulation shows that the length of conservation in the human MHC is even more extensive than previously thought. Human MHC ancestral haplotypes are inherited as a conserved region of genomic sequence spanning some 6,8 megabases from the HLA class II region and beyond the HLA class I region up to and including the HFE gene. Numerous examples of historical recombinations were also observed. [source]

Polymorphism of LMP2, TAP1, LMP7 and TAP2 in Brazilian Amerindians and Caucasoids: implications for the evolution of allelic and haplotypic diversity

F. Rueda Faucz
In the class II region of the major histocompatibility complex (MHC), four genes implicated in processing of MHC class I-presented antigens have been described. Two of these (TAP1 and TAP2) code for endoplasmic reticulum membrane transporter proteins and the other two (LMP2 and LMP7) for proteasome subunits. These genes are polymorphic, although much less so than classical MHC class I and II genes. There is controversy concerning the possible functional implications of this variation. Population genetics is one of the means of investigating the evolutionary and functional significance of genetic polymorphisms; however, few populations have been analysed with respect to TAP and LMP diversity. We present here the polymorphism of TAP1, TAP2, LMP2 and LMP7 genes in the Kaingang and Guarani Amerindian tribes, and in the Caucasoid population of the Brazilian State of Paraná. Allele frequencies found in the Caucasoids were close to those described for similar populations. Amerindians had a somewhat more restricted polymorphism, and allele and haplotype frequencies differed greatly between the two tribes. Overall linkage disequilibrium (LD) between the four genes was low in the Caucasoids, but high in the Amerindians, for which significant LD was seen for all informative pairs of loci. Comparing results of this and previous studies we observed that, whenever significant LD occurs in non-Amerindians, it tends to be similar in the different ethnic groups. While this might be interpreted as evidence of co-evolution of genes in the TAP-LMP region, the high haplotypic diversity in all populations and low LD in non-Amerindians indicate absence of co-evolution of the different genes. Distributions of allele and genotype frequencies are consistent with the hypothesis of selective neutrality. We conclude that genetic polymorphism of the human TAP and LMP genes and haplotypes is of little, if any, functional significance. [source]

Genomic structure and gene order of swine chromosome 7q1.1,q1.2

M. Tanaka
Summary To clarify the structure of the porcine genomic region that contains quantitative trait loci (QTL) related to fat, we constructed a bacterial artificial chromosome (BAC) contig of the region from DST to SRPK1 on porcine chromosome 7 and performed low-redundancy ,skim' shotgun sequencing of the clones that composed a minimum tiling path of the contig. This analysis revealed that the gene order from VPS52 to SRPK1 is conserved between human and swine and that comparison with the human sequence identified a rearrangement in the swine genome at the proximal end of VPS52. Analysis of the nucleotide sequences of three BAC clones that included the rearrangement point demonstrated that COL21A1 and DST, which were not present in the corresponding human region, were located adjacent to the rearrangement point. These results provide useful information about the genomic region containing QTL for fat in pigs and help to clarify the structure of the so-called ,extended-class II' region distal to the porcine major histocompatibility complex class II region. [source]

Structure, function and disease susceptibility of the bovine major histocompatibility complex

ABSTRACT The major histocompatibility complex (MHC) of cattle is known as the bovine leukocyte antigen (BoLA) and is located on chromosome 23. BoLA has been linked to variation in resistance to disease including bovine leukemia virus-induced lymphoma and mastitis. Moreover, BoLA appears to influence other traits such as milk yield, growth and reproduction, which are not often measured in humans, and variations in individual immune response to antigen. The BoLA appears to be organized in a similar way to the MHC region in humans, but there are notable differences. A major rearrangement within the class II region has led to the division of the BoLA into two distinct subregions of chromosome 23 separated by about a third of the chromosome's length. The class IIa subregion contains functionally expressed DR and DQ genes, while the class IIb subregion contains the genes of undefined status such as DYA, DYB, DMA, DMB, DOB, DOA, TAP1, TAP2, LAP2 and LMP7. In addition, one pair of human class II genes (DP) does not appear to have an equivalent in cattle, and there is one pair of DY genes that seem to be found only cattle, sheep and goats. In humans, three classical, polymorphic class I genes (HLA-A, -B and -C,) are each present on all haplotypes. However, in cattle, none of the four (or more) classical class-I genes identified are consistently expressed, and haplotypes differ from one to another in both the gene number and composition. These variations in both class I and II are likely to play an important role in cattle immune responses. This review summarizes current knowledge of the structural and functional features and disease association of BoLA genes. [source]