Class II Pathway (class + ii_pathway)

Distribution by Scientific Domains

Kinds of Class II Pathway

  • mhc class ii pathway


  • Selected Abstracts


    Processing and presentation of (pro)-insulin in the MHC class II pathway: the generation of antigen-based immunomodulators in the context of type 1 diabetes mellitus

    DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 4 2010
    Timo Burster
    Abstract Both CD4+ and CD8+ T lymphocytes play a crucial role in the autoimmune process leading to T1D. Dendritic cells take up foreign antigens and autoantigens; within their endocytic compartments, proteases degrade exogenous antigens for subsequent presentation to CD4+ T cells via MHC class II molecules. A detailed understanding of autoantigen processing and the identification of autoantigenic T cell epitopes are crucial for the development of antigen-based specific immunomodulators. APL are peptide analogues of auto-immunodominant T cell epitopes that bind to MHC class II molecules and can mediate T cell activation. However, APL can be rapidly degraded by proteases occurring in the extracellular space and inside cells, substantially weakening their efficiency. By contrast, protease-resistant APL function as specific immunomodulators and can be used at low doses to examine the functional plasticity of T cells and to potentially interfere with autoimmune responses. Here, we review the latest achievements in (pro)-insulin processing in the MHC class II pathway and the generation of APL to mitigate autoreactive T cells and to activate Treg cells. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    Targeting the MHC class II pathway of antigen presentation enhances immunogenicity and safety of allergen immunotherapy

    ALLERGY, Issue 1 2009
    J. M. Martínez-Gómez
    Background:, Current s.c. allergen-specific immunotherapy (SIT) leads to amelioration of IgE-mediated allergy, but it requires numerous allergen injections over several years and is frequently associated with severe side-effects. The aim of this study was to test whether modified recombinant allergens can improve therapeutic efficacy in SIT while reducing allergic side-effects. Methods:, The major cat allergen Fel d 1 was fused to a TAT-derived protein translocation domain and to a truncated invariant chain for targeting the MHC class II pathway (MAT-Fel d 1). The immunogenicity was evaluated in mice, while potential safety issues were assessed by cellular antigen stimulation test (CAST) using basophils from cat-dander-allergic patients. Results:, MAT-Fel d 1 enhanced induction of Fel d 1-specific IgG2a antibody responses as well as the secretion of IFN-, and IL-2 from T cells. Subcutaneous allergen-specific immunotherapy of mice using the modified Fel d 1 provided stronger protection against anaphylaxis than SIT with unmodified Fel d 1, and MAT-Fel d 1 caused less degranulation of human basophils than native Fel d 1. Conclusion:, MAT-Fel d 1 allergen enhanced protective antibody and Th1 responses in mice, while reducing human basophil degranulation. Immunotherapy using MAT-Fel d 1 allergen therefore has the potential to enhance SIT efficacy and safety, thus, shortening SIT. This should increase patient compliance and lower treatment costs. [source]