Clayey Material (clayey + material)

Distribution by Scientific Domains


Selected Abstracts


Predicting the Tails of Breakthrough Curves in Regional-Scale Alluvial Systems

GROUND WATER, Issue 4 2007
Yong Zhang
The late tail of the breakthrough curve (BTC) of a conservative tracer in a regional-scale alluvial system is explored using Monte Carlo simulations. The ensemble numerical BTC, for an instantaneous point source injected into the mobile domain, has a heavy late tail transforming from power law to exponential due to a maximum thickness of clayey material. Haggerty et al.'s (2000) multiple-rate mass transfer (MRMT) method is used to predict the numerical late-time BTCs for solutes in the mobile phase. We use a simple analysis of the thicknesses of fine-grained units noted in boring logs to construct the memory function that describes the slow decline of concentrations at very late time. The good fit between the predictions and the numerical results indicates that the late-time BTC can be approximated by a summation of a small number of exponential functions, and its shape depends primarily on the thicknesses and the associated volume fractions of immobile water in "blocks" of fine-grained material. The prediction of the late-time BTC using the MRMT method relies on an estimate of the average advective residence time, tad. The predictions are not sensitive to estimation errors in tad, which can be approximated by , where is the arithmetic mean ground water velocity and L is the transport distance. This is the first example of deriving an analytical MRMT model from measured hydrofacies properties to predict the late-time BTC. The parsimonious model directly and quantitatively relates the observable subsurface heterogeneity to nonlocal transport parameters. [source]


Chemically induced deformation of a porous layer coupled with advective,dispersive transport.

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 8 2001
Analytical solutions
Abstract In this paper a chemically induced deformation of porous material taking place during advective,dispersive transport of a chemical is considered. Linearized governing equations are derived and analytical solutions of 2 one-dimensional problems for a homogeneous layer with drained boundaries are developed. Numerical results for a particular clayey material and a chemical migrating through the layer showing distributions of concentration of chemical, changes in porosity of the material and pore fluid pressure, and evolution of settlement of the layer as functions of time are discussed. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Fault rock analysis of the northern part of the Chelungpu Fault and its relation to earthquake faulting of the 1999 Chi-Chi earthquake, Taiwan

ISLAND ARC, Issue 1 2005
Kohtaro UjiieArticle first published online: 3 MAR 200
Abstract The 1999 Chi-Chi earthquake in Taiwan (Mw = 7.6) produced a surface rupture along the north,south-striking Chelungpu thrust fault with pure dip-slip (east side up) and left lateral strike-slip displacements. Near-field strong-motion data for the northern part of the fault illustrate a distinct lack of the high-frequency seismic radiation associated with a large slip (10,15 m) and a rapid slip velocity (2,4 m/s), suggesting a smooth seismic slip associated with low dynamic frictional resistance on the fault. A drillhole was constructed at shallow depths in the possible fault zones of the northern part of the Chelungpu Fault, which may have slipped during the 1999 earthquake. One of the zones consists of a 20-cm-thick, unconsolidated fault breccia with a chaotic texture lacking both discrete slip surfaces (e.g. Riedel shears) and grain crushing. Other possible fault zones are marked by the narrow (less than a few centimeters) gouge zone in which clayey material intrudes into the damaged zone outside of the gouge zone. These characteristic fault rock textures suggest that the slip mechanisms at shallow levels during the earthquake involved either granular flow of initially unconsolidated material or slip localization under elevated pore pressure along the narrow clayey gouge zone. Because both mechanisms lead to low dynamic frictional resistance on the fault, the rapid seismic slip in the deep portions of the fault (i.e. the source region of strong-motion radiation) could have been accommodated by frictionless slip on the shallow portions of the fault. The combination of strong-motion data and fault rock analysis suggests that smooth slip associated with low dynamic friction occurred on both the deep and shallow portions of the fault, resulting in a large slip between the source region and the surface in the northern region. [source]


,Green earths': vibrational and elemental characterization of glauconites, celadonites and historical pigments

JOURNAL OF RAMAN SPECTROSCOPY, Issue 8 2008
Francesca Ospitali
Abstract ,Green earths' are employed since antiquity as pigments in the creation of artworks. The minerals responsible for the colour belong to four groups: (1) the clayey micas celadonite and glauconite, undoubtedly the most common; (2) smectites; (3) chlorites; (4) serpentines. Whereas there have been several studies on clayey materials, mineralogical analyses in the field of cultural heritage are mainly limited to the identification of the green earth without specific characterization of the mineralogical species. This work shows a preliminary characterization by the multi-techniques approach of some raw minerals (glauconite, celadonite and ferroceladonite). Vibrational analyses have been correlated with elemental analyses, thanks to the hyphenated instrumentation of scanning electron microscopy with EDS and Raman structural and chemical analyser (SEM-EDS-SCA) probes, which permitted collection of EDS and Raman spectra on the same microscopic area. Micro-Raman and Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopies were able to distinguish between celadonite and glauconite. The use of different lasers revealed resonance effects in the Raman spectra. In addition to pure minerals, archaeological samples and commercial green earths were also analysed, thereby enabling a more precise classification of the green pigments in heterogeneous samples such as wall paintings. Some commercially available green earths were found to contain organic dyes. Copyright © 2008 John Wiley & Sons, Ltd. [source]