Clay Films (clay + film)

Distribution by Scientific Domains


Selected Abstracts


Shear-induced migration of nanoclay during morphology evolution of PBT/PS blend

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008
Joung Sook Hong
Abstract In this study, we investigated clay migration and its localization in multiphase blend nanocomposite systems during the evolution of blend morphology to elucidate how a hydrodynamic stress and chemical affinity between the polymer and clay induce them. To observe the morphology evolution, a multilayered blend, alternatively superposed poly(butylenes terephthalate) (PBT) and polystyrene (PS)/clay films or PBT/clay and PS films, was subjected to homogeneous shear flow, 1 s,1. Furthermore, the morphology was observed at different shear rates 1 s,1. When the PBT/(PS/clay) multilayered blend is subjected to flow, the clay dispersed in the PS layer first migrates to the interface depending on the amount of applied strain. The clay at the interface causes the average drop size of blend morphology to become smaller and the blend morphology becomes more stable because of the coalescence suppression effect. As more shear is applied, the clay at the interface moves further into more compatible phase, PBT, although the viscosity of PBT is higher than PS. On the contrary, the clay in the PBT layer does not migrate to the PS phase at any shear rate, which means that its chemical affinity is strong enough to prevent shear-induced migration. The clay increases the viscosity of the PBT phase and results in a different morphology with a droplet, cocontinuous structure. As a result, when the clay is induced to migrate by hydrodynamic stress, it migrates into thermodynamically more stable positions at the interface or in the chemically more compatible phase, depending on the applied strain. Once it is located at a thermodynamically more stable position, it is difficult to push it out only by hydrodynamic stress. The location of clay is significantly affected by the morphology during evolution, which means that the blend morphology can control the droplet form and cocontinuous structure by control of the clay migration kinetics. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


Flexible Transparent Clay Films with Heat-Resistant and High Gas-Barrier Properties,

ADVANCED MATERIALS, Issue 18 2007
T. Ebina
Flexible transparent clay films with heat resistant and high gas-barrier properties are fabricated by using a simple casting procedure. The properties are as follows, lower than 0.1,cm3 20,,m,m,2,day,1,atm,1 for oxygen permeability, over 90,% total visible-light transmittance, and heat durability up to 350,,°C. The figure shows the transparency of the film before and after heat treatment at 350,,°C for one,hour. [source]


Kinetics of toluene sorption and desorption in Ca- and Cu-montmorillonites investigated with Fourier transform infrared spectroscopy under two different levels of humidity

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2004
Yang-Hsin Shih
Abstract Clays in soils or groundwater aquifer materials play roles in the sorption of organic pollutants. The intrinsic sorption kinetics of toluene in dry and humid clay films was investigated by tracking the change of infrared absorbance. Under the humid condition, similar toluene-sorbed intensities were found in Ca- and Cu-montmorillonites. However, a higher intensity of sorbed toluene was found in the Cu-form than in the Ca-form under the dry condition, which indicates a stronger interaction occurring in dry Cu-montmorillonite. The general time scale of sorption of toluene on clays is around 100 s. In both forms of montmorillonite, some portion of toluene was desorbed at an extremely slow rate under the dry condition. Some newly identified peaks were persistent against desorption from montmorillonites, suggesting the existence of irreversibly sorbed species and the possibility of toluene transformation occurring in clay systems. [source]


Flexible Transparent Clay Films with Heat-Resistant and High Gas-Barrier Properties,

ADVANCED MATERIALS, Issue 18 2007
T. Ebina
Flexible transparent clay films with heat resistant and high gas-barrier properties are fabricated by using a simple casting procedure. The properties are as follows, lower than 0.1,cm3 20,,m,m,2,day,1,atm,1 for oxygen permeability, over 90,% total visible-light transmittance, and heat durability up to 350,,°C. The figure shows the transparency of the film before and after heat treatment at 350,,°C for one,hour. [source]


Properties of amylopectin/montmorillonite composite films containing a coupling agent

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2007
D. Nordqvist
Abstract The addition of clay to polymers has the combined effects of enhancing both the strength/stiffness and the barrier properties. This investigation presents a novel approach to further enhance the strength/stiffness of cast plasticized amylopectin (AP)/Na+ -montmorillonite clay films using a water-soluble coupling agent, poly[(isobutylene- alt -maleic acid, ammonium salt)- co -(isobutylene- alt -maleic anhydride)], between the filler and the matrix. The addition of clay increased the strength and stiffness of the film and the addition of 0.4 parts of a coupling agent per 1 part clay further increased these properties. The trends were the same after each treatment, and there were always significant differences in stiffness and strength between the films without clay and with clay with 0.4 parts of the coupling agent. The increase in stiffness/strength in the presence of a small amount of the coupling agent suggested that it had a bridging effect, presumably through strong secondary bonds to the clay and to the matrix. Infrared spectroscopy and moisture swelling experiments indicated that ester bonds were formed between the coupling agent and AP. X-ray spectroscopy and transmission electron microscopy revealed that the clay-particle/polymer structure was qualitatively independent of the presence of the coupling agent showing a mixture of intercalated clay stacks and exfoliated platelets. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4160,4167, 2007 [source]


Ni clay neoformation on montmorillonite surface

JOURNAL OF SYNCHROTRON RADIATION, Issue 2 2001
Rainer Dähn
Polarized extended X-ray absorption fine structure spectroscopy (P-EXAFS) was used to study the sorption mechanism of Ni on the aluminous hydrous silicate montmorillonite at high ionic strength (0.3 M NaClO4), pH 8 and a Ni concentration of 0.66 mM. Highly textured self-supporting clay films were obtained by slowly filtrating a clay suspension after a reaction time of 14 days. P-EXAFS results indicate that sorbed Ni has a Ni clay-like structural environment with the same crystallographic orientation as montmorillonite layers. [source]