Clock Gene Expression (clock + gene_expression)

Distribution by Scientific Domains


Selected Abstracts


Circadian clock and cell cycle gene expression in mouse mammary epithelial cells and in the developing mouse mammary gland

DEVELOPMENTAL DYNAMICS, Issue 1 2006
Richard P. Metz
Abstract Mouse mammary epithelial cells (HC-11) and mammary tissues were analyzed for developmental changes in circadian clock, cellular proliferation, and differentiation marker genes. Expression of the clock genes Per1 and Bmal1 were elevated in differentiated HC-11 cells, whereas Per2 mRNA levels were higher in undifferentiated cells. This differentiation-dependent profile of clock gene expression was consistent with that observed in mouse mammary glands, as Per1 and Bmal1 mRNA levels were elevated in late pregnant and lactating mammary tissues, whereas Per2 expression was higher in proliferating virgin and early pregnant glands. In both HC-11 cells and mammary glands, elevated Per2 expression was positively correlated with c-Myc and Cyclin D1 mRNA levels, whereas Per1 and Bmal1 expression changed in conjunction with ,- casein mRNA levels. Interestingly, developmental stage had differential effects on rhythms of clock gene expression in the mammary gland. These data suggest that circadian clock genes may play a role in mouse mammary gland development and differentiation. Developmental Dynamics 235:263,271, 2006. © 2005 Wiley-Liss, Inc. [source]


Food-entrainable circadian oscillators in the brain

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2009
M. Verwey
Abstract Circadian rhythms in mammalian behaviour and physiology rely on daily oscillations in the expression of canonical clock genes. Circadian rhythms in clock gene expression are observed in the master circadian clock, the suprachiasmatic nucleus but are also observed in many other brain regions that have diverse roles, including influences on motivational and emotional state, learning, hormone release and feeding. Increasingly, important links between circadian rhythms and metabolism are being uncovered. In particular, restricted feeding (RF) schedules which limit food availability to a single meal each day lead to the induction and entrainment of circadian rhythms in food-anticipatory activities in rodents. Food-anticipatory activities include increases in core body temperature, activity and hormone release in the hours leading up to the predictable mealtime. Crucially, RF schedules and the accompanying food-anticipatory activities are also associated with shifts in the daily oscillation of clock gene expression in diverse brain areas involved in feeding, energy balance, learning and memory, and motivation. Moreover, lesions of specific brain nuclei can affect the way rats will respond to RF, but have generally failed to eliminate all food-anticipatory activities. As a consequence, it is likely that a distributed neural system underlies the generation and regulation of food-anticipatory activities under RF. Thus, in the future, we would suggest that a more comprehensive approach should be taken, one that investigates the interactions between multiple circadian oscillators in the brain and body, and starts to report on potential neural systems rather than individual and discrete brain areas. [source]


Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain?

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2007
Clare Guilding
Abstract The suprachiasmatic nucleus of the hypothalamus (SCN) is the master circadian pacemaker or clock in the mammalian brain. Canonical theory holds that the output from this single, dominant clock is responsible for driving most daily rhythms in physiology and behaviour. However, important recent findings challenge this uniclock model and reveal clock-like activities in many neural and non-neural tissues. Thus, in addition to the SCN, a number of areas of the mammalian brain including the olfactory bulb, amygdala, lateral habenula and a variety of nuclei in the hypothalamus, express circadian rhythms in core clock gene expression, hormone output and electrical activity. This review examines the evidence for extra-SCN circadian oscillators in the mammalian brain and highlights some of the essential properties and key differences between brain oscillators. The demonstration of neural pacemakers outside the SCN has wide-ranging implications for models of the circadian system at a whole-organism level. [source]


Opposing actions of neuropeptide Y and light on the expression of circadian clock genes in the mouse suprachiasmatic nuclei

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2002
Elizabeth S. Maywood
Abstract The circadian clockwork of the hypothalamic suprachiasmatic nuclei (SCN) is synchronized by light and by nonphotic cues. The core timing mechanism is cell-autonomous, based on an autoregulatory transcriptional/translational feedback loop of circadian genes and their products. This study investigated the effects of neuropeptide Y (NPY), a potent nonphotic resetting cue, and its interaction with light in regulating clock gene expression in the SCN in vivo. Injection of NPY adjacent to the SCN and transfer to darkness 7 h before scheduled lights out, shifted the circadian activity,rest cycle. Exposure to light for 1 h immediately after NPY infusion blocked this behavioural response. NPY-induced shifts were accompanied by suppression of both mPer1 and mPer2 mRNA in the SCN, assessed 3 h after infusion. mPer mRNAs were not altered 1 h after infusion. Levels of mClock mRNA or mCLOCK immunoreactivity in the SCN were not affected by NPY at either time point. In parallel to the behavioural response, the NPY-induced suppression of mPer genes in the SCN was attenuated when a light pulse was delivered immediately after the infusion. These results identify mPer1 and mPer2 as molecular targets for both photic and nonphotic (NPY-induced) resetting of the clockwork, and support a synthetic model of circadian entrainment based upon convergent up- and downregulation of mPer expression. [source]


Daily oscillations in liver function: diurnal vs circadian rhythmicity

LIVER INTERNATIONAL, Issue 3 2004
Alec J. Davidson
Abstract: The rodent suprachiasmatic nucleus (SCN), a site in the brain that contains a light-entrained biological (circadian) clock, has been thought of as the master oscillator, regulating processes as diverse as cell division, reproductive cycles, sleep, and feeding. However, a second circadian system exists that can be entrained by meal feeding and has an influence over metabolism and behavior. Recent advances in the molecular genetics of circadian clocks are revealing clock characteristics such as rhythmic clock gene expression in a variety of non-neural tissues such as liver. Although little is known regarding the function of these clock genes in the liver, there is a large literature that addresses the capabilities of this organ to keep time. This time-keeping capability may be an adaptive function allowing for the prediction of mealtime and therefore improved digestion and energy usage. Consequently, an understanding of these rhythms is of great importance. This review summarizes the results of studies on diurnal and circadian rhythmicity in the rodent liver. We hope to lend support to the hypothesis that there are functionally important circadian clocks outside of the brain that are not light- or SCN-dependent. Rather, these clocks are largely responsive to stimuli involved in nutrient intake. The interaction between these two systems may be very important for the ability of organisms to synchronize their internal physiology. [source]