Clock Function (clock + function)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


The mouse VPAC2 receptor confers suprachiasmatic nuclei cellular rhythmicity and responsiveness to vasoactive intestinal polypeptide in vitro

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2003
David J. Cutler
Abstract Expression of coherent and rhythmic circadian (, 24 h) variation of behaviour, metabolism and other physiological processes in mammals is governed by a dominant biological clock located in the hypothalamic suprachiasmatic nuclei (SCN). Photic entrainment of the SCN circadian clock is mediated, in part, by vasoactive intestinal polypeptide (VIP) acting through the VPAC2 receptor. Here we used mice lacking the VPAC2 receptor (Vipr2,/,) to examine the contribution of this receptor to the electrophysiological actions of VIP on SCN neurons, and to the generation of SCN electrical firing rate rhythms SCN in vitro. Compared with wild-type controls, fewer SCN cells from Vipr2,/, mice responded to VIP and the VPAC2 receptor-selective agonist Ro 25-1553. By contrast, similar proportions of Vipr2,/, and wild-type SCN cells responded to gastrin-releasing peptide, arginine vasopressin or N -methyl- d -aspartate. Moreover, VIP-evoked responses from control SCN neurons were attenuated by the selective VPAC2 receptor antagonist PG 99-465. In firing rate rhythm experiments, the midday peak in activity observed in control SCN cells was lost in Vipr2,/, mice. The loss of electrical activity rhythm in Vipr2,/, mice was mimicked in control SCN slices by chronic treatment with PG 99-465. These results demonstrate that the VPAC2 receptor is necessary for the major part of the electrophysiological actions of VIP on SCN cells in vitro, and is of fundamental importance for the rhythmic and coherent expression of circadian rhythms governed by the SCN clock. These findings suggest a novel role of VPAC2 receptor signalling, and of cell-to-cell communication in general, in the maintenance of core clock function in mammals, impacting on the cellular physiology of SCN neurons. [source]


Neurobiology of the fruit fly's circadian clock

GENES, BRAIN AND BEHAVIOR, Issue 2 2005
C. Helfrich-Förster
Studying the fruit fly Drosophila melanogaster has revealed mechanisms underlying circadian clock function. Rhythmic behavior could be assessed to the function of several clock genes that generate circadian oscillations in certain brain neurons, which finally modulate behavior in a circadian manner. This review outlines how individual circadian pacemaker neurons in the fruit fly's brain control rhythm in locomotor activity and eclosion. [source]


Clock Gene Protein mPER1 is Rhythmically Synthesized and Under cAMP Control in the Mouse Pineal Organ

JOURNAL OF NEUROENDOCRINOLOGY, Issue 4 2001
C. Von Gall
The mammalian clock gene Per1 is an important element of endogenous oscillators that control daily rhythms in central and peripheral tissues. Although such autonomous clock function is lost in the mammalian pineal gland during evolution, mPer1 mRNA and mPER1 protein were found to be strongly elevated in the mouse pineal organ during the dark period compared to daytime values. In vitro studies showed that mPer1 mRNA and mPER1 protein in mouse pineal gland are induced following the activation of a signalling pathway of fundamental importance for pineal physiology, the norepinephrine/cAMP/phosphoCREB cascade. mPER1 may function in the mouse pineal gland as a time-measuring molecule to participate in regulating rhythmic cellular responses in vivo. [source]


Characterization of two members of the cryptochrome/photolyase family from Ostreococcus tauri provides insights into the origin and evolution of cryptochromes

PLANT CELL & ENVIRONMENT, Issue 10 2010
MARC HEIJDE
ABSTRACT Cryptochromes (Crys) are blue light receptors believed to have evolved from the DNA photolyase protein family, implying that light control and light protection share a common ancient origin. In this paper, we report the identification of five genes of the Cry/photolyase family (CPF) in two green algae of the Ostreococcus genus. Phylogenetic analyses were used to confidently assign three of these sequences to cyclobutane pyrimidine dimer (CPD) photolyases, one of them to a DASH-type Cry, and a third CPF gene has high homology with the recently described diatom CPF1 that displays a bifunctional activity. Both purified OtCPF1 and OtCPF2 proteins show non-covalent binding to flavin adenine dinucleotide (FAD), and additionally to 5,10-methenyl-tetrahydrofolate (MTHF) for OtCPF2. Expression analyses revealed that all five CPF members of Ostreococcus tauri are regulated by light. Furthermore, we show that OtCPF1 and OtCPF2 display photolyase activity and that OtCPF1 is able to interact with the CLOCK:BMAL heterodimer, transcription factors regulating circadian clock function in other organisms. Finally, we provide evidence for the involvement of OtCPF1 in the maintenance of the Ostreococcus circadian clock. This work improves our understanding of the evolutionary transition between photolyases and Crys. [source]


The Arabidopsis SPA1 gene is required for circadian clock function and photoperiodic flowering

THE PLANT JOURNAL, Issue 5 2006
Masaki Ishikawa
Summary Arabidopsis phytochrome A (phyA) regulates not only seed germination and seedling de-etiolation but also circadian rhythms and flowering time in adult plants. The SUPPRESSOR OF PHYA-105 (SPA1) acts as a negative regulator of phyA-mediated de-etiolation of young seedlings, but its roles in adult plants have not yet been described. Here, we show that SPA1 is involved in regulating circadian rhythms and flowering time in plants. Under constant light, the abundance of SPA1 protein exhibited circadian regulation, whereas under constant darkness, SPA1 protein levels remained unchanged. These results indicate that the SPA1 protein is controlled by the circadian clock and light signals. In addition, the spa1-3 mutation slightly shortened the circadian period of CCA1, TOC1/PRR1 and SPA1 transcript accumulation under constant light. Phenotypic analysis showed that the spa1-3 mutant flowers early under short-day (SD) but not long-day (LD) conditions. Consistent with this finding, transcripts encoding flowering locus T (FT), which promotes flowering, increased in spa1-3 under only SD conditions, although the CONSTANS (CO) transcript level was not affected under either SD nor LD conditions. Our results indicate that SPA1 not only negatively controls phyA-mediated signaling in seedlings, but also regulates circadian rhythms and flowering time in plants. [source]