Climbing Exercise (climbing + exercise)

Distribution by Scientific Domains


Selected Abstracts


Tower Climbing Exercise Started 3 Months After Ovariectomy Recovers Bone Strength of the Femur and Lumbar Vertebrae in Aged Osteopenic Rats,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2003
Takuya Notomi
Abstract To determine both the preventive and recovery effects of tower climbing exercise on mass, strength, and local turnover of bone in ovariectomized (OVX) rats, we carried out two experiments. In experiment I, 60 Sprague-Dawley rats, 12 months of age, were assigned to four groups: a Baseline Control, Sham-Operated Sedentary, OVX-Sedentary and OVX-Exercise rats. Rats voluntarily climbed a 200-cm tower to drink water from a bottle set at the top. At 3 months, OVX elevated both the femoral cortex and lumbar trabecular turnover, leading to a reduction in bone mass and strength. However, in OVX-Exercise rats, those values were maintained at the same level as in the Sham-Sedentary rats. Thus, the climbing exercise, started after 3 days of OVX, prevented OVX-induced cortical and trabecular bone loss by depressing turnover elevation. After confirming the preventive effect, we evaluated the recovery effect of exercise. In experiment II, 90 Sprague-Dawley rats, 12 months of age, were assigned to six groups: a Baseline control, two groups of Sham-Operated Sedentary and OVX-Sedentary, and OVX-Exercise rats. The exercise started 3 months after the OVX operation. At 3 months, OVX increased the trabecular bone formation rate and osteoclast surface, leading to a decrease in compressive strength. In the midfemur, the cross-sectional area, moment of inertia, and bending load values decreased. At 6 months, in the OVX-Exercise rats, the parameters of breaking load in both the lumbar and midfemur, lumbar bone mass, and the total cross-sectional area recovered to the same levels as those in the Sham-Sedentary rats. However, the cortical bone area did not recover. Periosteal bone formation increased, while endosteal bone formation decreased. These results showed that the climbing exercise had both a preventive and recovery effect on bone strength in OVX rats. In the mid-femur, effects on bone formation were site-specific, and the cross-sectional morphology was improved without an increase in cortical bone area, supporting cortical drift by mechanical stimulation. [source]


Climbing Exercise Increases Bone Mass and Trabecular Bone Turnover Through Transient Regulation of Marrow Osteogenic and Osteoclastogenic Potentials in Mice,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2003
Toshiharu Mori
Abstract To investigate the relationship between the effects of bone turnover and bone marrow cell development in bone cells, we developed a mouse voluntary climbing exercise model. Climbing exercise increased bone volume and transient osteogenic potential of bone marrow. This model would be suitable for investigating the mechanistic roles of mechanical loading. Introduction: The relationship between bone mass gain and local bone formation and resorption in mechanically loaded bone is not well understood. Materials and Methods: Sixty-five C57BL/6J mice, 8 weeks of age, were assigned to five groups: a baseline control and two groups each of ground control and climbing exercise mice for 2 and 4 weeks. Mice were housed in a 100-cm tower and had to climb toward a bottle placed at the top to drink water. Results: Compared with the ground control, bone mineral density of the left femur increased in the climbing mice at 4 weeks. At 2 and 4 weeks, bone formation rate (BFR/BS) of periosteal surface, the cross-sectional area, and moment of inertia were increased in the climbing mice, whereas BFR/BS and eroded surface (ES/BS) of endosteal surface did not differ. The trabecular bone volume (BV/TV) of the proximal tibia increased in climbing mice, and osteoclast surface (Oc.S/BS) and osteoclast number decreased at 2 weeks. At 4 weeks, there were increases in BV/TV and parameters of bone formation, including mineralized surface, mineral apposition rate, and bone formation rate. In marrow cell cultures from the tibia, the number of alkaline phosphatase+ colony forming units-fibroblastic and the area of mineralized nodule formation in climbing mice were increased, and the number of osteoclast-like TRACP+ multinucleated cells was lower at 2 weeks. At 4 weeks, these parameters recovered to the levels of the ground controls. Conclusion: Our results indicate that climbing increased trabecular bone volume and reduced bone resorption, with a subsequent increase in bone formation. Intermittent climbing downregulates marrow osteoclastogenic cells and upregulates osteogenic cells initially, but further exercise seemed to desensitize them. Cortical envelopes were enlarged earlier, but the response seems to differ from trabecular bone. [source]


Weighted Stair Climbing in Mobility-Limited Older People: A Pilot Study

JOURNAL OF AMERICAN GERIATRICS SOCIETY, Issue 4 2002
MD Jonathan Bean MS
OBJECTIVES: To evaluate weighted stair climbing exercise (SCE) as a means of increasing lower extremity muscle power in mobility-limited older people. DESIGN: Single-blinded, randomized controlled pilot study INTERVENTIONS: Subjects were randomized into one of two 12-week exercise programs. The intervention group (SCE) (n = 23) ascended and descended stairs, at a set pace, while wearing a weighted vest. The control group (WALK) (n = 22) participated in a standardized walking program. MEASUREMENTS: Primary and secondary outcomes included measures of muscle power and strength, submaximal aerobic capacity, and physical performance. RESULTS: SCE produced 17% improvement in double leg press peak power in comparison with WALK (P = .013) and significant improvement in stair climbing power from baseline (12%). Improvement in submaximal aerobic performance was equivalent for both groups. Although not statistically significant, effect size estimates suggest that SCE can potentially influence knee extension power and strength. Stair climb time was improved in both groups, whereas SCE produced significant improvements from baseline SPPB score in a subcohort of participants. CONCLUSIONS: These findings suggest that SCE may be a useful component of a home exercise program designed to enhance lower extremity muscle power, aerobic capacity, and functional performance. Further investigation is needed involving larger sample sizes and direct comparisons with other forms of resistance training. [source]


Tower Climbing Exercise Started 3 Months After Ovariectomy Recovers Bone Strength of the Femur and Lumbar Vertebrae in Aged Osteopenic Rats,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2003
Takuya Notomi
Abstract To determine both the preventive and recovery effects of tower climbing exercise on mass, strength, and local turnover of bone in ovariectomized (OVX) rats, we carried out two experiments. In experiment I, 60 Sprague-Dawley rats, 12 months of age, were assigned to four groups: a Baseline Control, Sham-Operated Sedentary, OVX-Sedentary and OVX-Exercise rats. Rats voluntarily climbed a 200-cm tower to drink water from a bottle set at the top. At 3 months, OVX elevated both the femoral cortex and lumbar trabecular turnover, leading to a reduction in bone mass and strength. However, in OVX-Exercise rats, those values were maintained at the same level as in the Sham-Sedentary rats. Thus, the climbing exercise, started after 3 days of OVX, prevented OVX-induced cortical and trabecular bone loss by depressing turnover elevation. After confirming the preventive effect, we evaluated the recovery effect of exercise. In experiment II, 90 Sprague-Dawley rats, 12 months of age, were assigned to six groups: a Baseline control, two groups of Sham-Operated Sedentary and OVX-Sedentary, and OVX-Exercise rats. The exercise started 3 months after the OVX operation. At 3 months, OVX increased the trabecular bone formation rate and osteoclast surface, leading to a decrease in compressive strength. In the midfemur, the cross-sectional area, moment of inertia, and bending load values decreased. At 6 months, in the OVX-Exercise rats, the parameters of breaking load in both the lumbar and midfemur, lumbar bone mass, and the total cross-sectional area recovered to the same levels as those in the Sham-Sedentary rats. However, the cortical bone area did not recover. Periosteal bone formation increased, while endosteal bone formation decreased. These results showed that the climbing exercise had both a preventive and recovery effect on bone strength in OVX rats. In the mid-femur, effects on bone formation were site-specific, and the cross-sectional morphology was improved without an increase in cortical bone area, supporting cortical drift by mechanical stimulation. [source]