Home About us Contact | |||
Climatic Zones (climatic + zone)
Kinds of Climatic Zones Selected AbstractsAre urban bird communities influenced by the bird diversity of adjacent landscapes?JOURNAL OF APPLIED ECOLOGY, Issue 5 2001Philippe Clergeau Summary 1The species diversity of adjacent landscapes influences the conservation or restoration of several animal groups in urban areas, but the effect on birds is unclear. To address this question, we compared bird species richness (BSR) and community composition between periurban (area surrounding the town) and urban (suburban and centre areas) landscapes across three spatial scales. 2At a large biogeographical scale (temperate and boreal climatic zone), relationships between the BSR of urban areas and their surrounding landscapes were examined in a meta-analysis of 18 published studies. In general, BSR was negatively correlated with latitude and urbanization. The BSR of suburban and centre landscapes correlated positively with the BSR of periurban landscapes. However, latitudinal effects were also involved, as BSR in urban and periurban landscapes declined as town latitude increased. Similarity indices were low (50%) between periurban and centre bird communities. 3At a regional scale, we assessed winter bird data from several towns within three regions of temperate and boreal countries (western France, northern Finland and eastern Canada). The type of periurban landscape, number of inhabitants and town diameter did not affect BSR. BSR was similar between the cities of a given biogeographical area. Bird communities were more similar between similar habitat types of different cities than between different habitats of the same city. 4At a local scale, we tested the influence of proximity to the periurban landscape on BSR in parks of western French towns of different size. Neither BSR nor community similarity changed in relation to the distance of the park from the periurban landscape. 5Guild composition according to diet and feeding habitat did not vary between urban and periurban locations at regional or local scales. 6We conclude that, at regional and local scales, urban bird communities are independent of the bird diversity of adjacent landscapes, and that local features are more important than surrounding landscapes in determining BSR. Whatever the biodiversity quality of the periurban landscape, site-specific actions such as shrub and tree planting, water restoration and increasing vegetation diversity can change bird diversity in towns and improve the quality of human,wildlife contacts. [source] Modern pollen,vegetation relationships in subarctic southern Greenland and the interpretation of fossil pollen data from the Norse landnámJOURNAL OF BIOGEOGRAPHY, Issue 3 2007J. Edward Schofield Abstract Aim, The objective of this paper is to explore the relationships that exist between vegetation and modern pollen rain in the open, largely treeless landscape of subarctic Greenland. The implications of these results for the interpretation of fossil pollen assemblages from the time of the Norse landnám are then examined. Location, The study area is the sheep farming district of Qassiarsuk in the subarctic, subcontinental vegetational and climatic zone of southern Greenland (61° N, 45° W). Between c.ad 1000,1500 this region was contained within the Norse Eastern Settlement. Methods, Detrended Correspondence Analysis (DCA) of harmonized plant,pollen data sets is used to compare plant cover in 64 vegetation quadrats with pollen assemblages obtained from moss polsters at matching locations. Presence/absence data are also used to calculate indices of association, over- and under-representation for pollen types. Results, Good correspondence between paired vegetation,pollen samples occurs in many cases, particularly in locations where Salix glauca,Betula glandulosa dwarf shrub heath is dominant, and across herbaceous field boundaries and meadows. Pollen samples are found to be poor at reflecting actual ground cover where ericales or Juniperus communis are the locally dominant shrubs. Dominant or ubiquitous taxa within this landscape (Betula, Salix and Poaceae) are found to be over-represented in pollen assemblages, as are several of the ,weeds' generally accepted as introduced by the Norse settlers. Main conclusions, Due to their over-representation in the pollen rain, many of the Norse apophytes and introductions (e.g. Rumex acetosa and R. acetosella) traditionally used to infer human activity in Greenland should be particularly sensitive indicators for landnám, allowing early detection of Norse activity in fossil assemblages. Pteridophyte spores are found to be disassociated with the ground cover of ferns and clubmosses, but are over-represented in pollen assemblages, indicating extra-local or regional sources and long residence times in soil/sediment profiles for these microfossils. A pollen record for Hordeum -type registered in close proximity to a field containing barley suggests that summer temperatures under the current climatic regime are, at least on occasion, sufficient to allow flowering. [source] Environmental temperature stress on drugs in prehospital emergency medical serviceACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 4 2003M. Helm Background: Drugs used in prehospital emergency medical service (EMS) in principle are subject to the same storage restrictions as hospital-based medications. The prehospital emergency environment however, often exceeds these storage recommendations. Main stress factors are sunlight, vibration and extreme temperature, which may lead to alteration in chemical and physical stability of stored pharmaceuticals, as well as microbiological contamination and concentration enhancement of pharmacological inserts. Methods: The purpose of this study was to determine the environmental temperature stress upon drugs used in the prehospital EMS under real mission conditions within different types of rescue vehicles (rescue helicopter [HEMS], ambulance [AMB] and emergency physician transport vehicle [EPTV]) during a ,summer' and ,winter' monitoring period (2 months duration each/location: southern Germany). Results: Recorded temperatures varied from ,13.2°C to +50.6°C. The recommended maximum storage temperature (+25°C) was exceeded in all rescue vehicles (33,45% of total exposure time), whereas the recommended minimum storage temperature (0°C) only fell short in the EPTV (19% of total exposure time). The daily maximum temperature variations ranged from 19.0°C (winter) to 32.9°C (summer). Conclusions: These results show that even in a moderate climatic zone, drugs used in prehospital EMS are significantly influenced by temperature stress; furthermore, these results recommend the usage of temperature-controlled drug boxes. [source] Variation in the impact of exotic grasses on native plant composition in relation to fire across an elevation gradient in HawaiiAUSTRAL ECOLOGY, Issue 5 2000Carla M. D'Antonio Abstract The impact that an exotic species can have on the composition of the community it enters is a function of its abundance, its particular species traits and characteristics of the recipient community. In this study we examined species composition in 14 sites burned in fires fuelled by non-indigenous C4 grasses in Hawaii Volcanoes National Park, Hawaii. We considered fire intensity, time since fire, climatic zone of site, unburned grass cover, unburned native cover and identity of the most abundant exotic grass in the adjacent unburned site as potential predictor variables of the impact of fire upon native species. We found that climatic zone was the single best variable for explaining variation in native cover among burned sites and between burned and unburned pairs. Fire in the eastern coastal lowlands had a very small effect on native plant cover and often stimulated native species regeneration, whereas fire in the seasonal submontane zone consistently caused a decline in native species cover and almost no species were fire tolerant. The dominant shrub, Styphelia tameiameia, in particular was fire intolerant. The number of years since fire, fire intensity and native cover in reference sites were not significantly correlated with native species cover in burned sites. The particular species of grass that carried the fire did however, have a significant effect on native species recovery. Where the African grass Melinis minutiflora was a dominant or codominant species, fire impacts were more severe than where it was absent regardless of climate zone. Overall, the impacts of exotic grass-fuelled fires on native species composition and cover in seasonally dry Hawaiian ecosystems was context specific. This specificity is best explained by differences between the climatic zones in which fire occurred. Elevation was the main physical variable that differed among the climatic zones and it alone could explain a large percentage of the variation in native cover among sites. Rainfall, by contrast, did not vary systematically with elevation. Elevation is associated with differences in composition of the native species assemblages. In the coastal lowlands, the native grass Heteropogon contortus, was largely responsible for positive changes in native cover after fire although other native species also increased. Like the exotic grasses, this species is a perennial C4 grass. It is lacking in the submontane zone and there are no comparable native species there and almost all native species in the submontane zone were reduced by fire. The lack of fire tolerant species in the submontane zone thus clearly contributes to the devastating impact of fire upon native cover there. [source] The role of microarthropods in terrestrial decomposition: a meta-analysis of 40 years of litterbag studiesBIOLOGICAL REVIEWS, Issue 3 2009Christian Kampichler ABSTRACT Litterbags have been utilized in soil ecology for about 50 years. They are useful because they confine organic material and thus enable the study of decomposition dynamics (mass loss and/or nutrient loss through time, colonization by soil biota) in situ, i.e. under field conditions. Researchers can easily restrict or permit access to certain size classes of soil fauna to determine their contribution to litter mass loss by choosing adequate mesh size or applying specific biocides. In particular, the mesofauna has received much attention since it comprises two very abundant and diverse microarthropod groups, the Collembola (springtails) and Acari (mites). We comprehensively searched the literature from the mid-1960s to the end of 2005 for reports on litterbag experiments investigating the role of microarthropods in terrestrial decomposition. Thirty papers reporting 101 experiments satisfied our selection criteria and were included in the database. Our meta-analysis revealed that microarthropods have a moderate but significant effect on mass loss. We discuss in detail the interactions of the microarthropod effect with study characteristics such as experimental design (e.g. number of bags, duration of experiment), type of exposed organic matter, climatic zone and land use of the study site. No publication bias was detected; however, we noticed a significant decrease in the microarthropod effect with publication year, indicating that, in the first decades of litterbag use, soil zoologists may have studied "promising" sites with a higher a priori probability of positive microarthropod effects on litter mass loss. A general weakness is that the treatments differ not only with respect to the presence or absence of microarthropods, but also with regard to mesh size (small to exclude microarthropods, wide to permit their access) or presence (to exclude microarthropods) and absence (to permit their access) of an insecticide. Consequently, the difference between the decomposition rates in the treatments is not a pure microarthropod effect but will be influenced by the additive effects of mesh size and insecticide. The relative contribution of the "true" microarthropod effect remains unknown without additional treatments controlling for the differential mesh size/insecticide effect. A meta-analysis including only those studies using different mesh size and for which the data were corrected by subtracting an estimated mesh size effect based on data from the literature yielded a significantly negative microarthropod effect on litter decomposition. These results cast doubt on the widely accepted hypothesis that microarthropods generally exert a positive effect on litter mass loss. We conclude that after 40 years of litterbag studies our knowledge on the role of microarthropods in litter mass loss remains limited and that the inclusion of a third treatment in future studies is a promising way to retain litterbags as a meaningful tool of soil biological studies. [source] Late Quaternary vadose carbonate diagenesis in coastal and desert dune and beach sands: is there a palaeoclimatic signal?EARTH SURFACE PROCESSES AND LANDFORMS, Issue 12 2004Sue McLaren Abstract A study of the variation in cement amounts in aeolianite and sandy beach calcarenites that range in age from Holocene to Last Interglacial is used to assess whether a palaeoclimatic control on vadose diagenesis can be identi,ed. Examples are taken from modern-day arid to subhumid settings and represent a geographical distribution ranging from Libya and Oman, to the Mediterranean, the Caribbean and Mexico. The results indicate that a palaeoclimatic signal can be identi,ed in some deposits. However, in other sediments there is substantial variability in mean cement abundance within deposits as well as between these sand bodies. Moreover, many of the better cemented sediments are located in areas where there is accelerated diagenesis, such as in the sea spray zone, close to the groundwater table or near to a palaeosurface, rather than in climatically wet regions. The inference is that palaeoclimatic interpretations are substantially complicated by other factors that affect diagenetic processes and change. Therefore caution is needed when studying the role of climate in vadose diagenesis in the light of the effects of other intrinsic and extrinsic controls. This paper does not aim to provide a de,nitive comparison of sites from different climatic zones. The approach taken here is: (a) to see if there is an overall palaeoclimatic signal in the samples studied; (b) to use examples to illustrate how explanations/controls other than those relating to climate can account for the variabilities observed; and (c) if there is a climatic effect, to see if it is the main over-riding control on vadose diagenesis. The conclusions drawn from this research highlight that it is possible to misinterpret evidence if the study is approached with preconceived notions of simplistic relationships between diagenesis and climate. Copyright © 2004 John Wiley & Sons, Ltd. [source] Age-related change in canopy traits shifts conspecific facilitation to interference in a semi-arid shrublandECOGRAPHY, Issue 4 2007Orna Reisman-Berman Shifts between facilitation and interference and their importance in shaping plant population and community dynamics have received wide recognition. Nevertheless, the causes and spatio-temporal scales of these shifts are poorly understood, yet strongly debated. This study tested the hypothesis that age-related changes in canopy structure shift the effect of a nurse shrub on their protégé from facilitation to interference, using as a model system the interaction between the dwarf shrub Sarcopoterium spinosum and conspecific new recruits, in the shrubland of the transition area between the Mediterranean and the semi-arid climatic zones of Israel. Foliation level (i.e. the percentage of canopy surface area covered with leaves), a measure of shrub canopy structure, increased with age. Shading level was significantly and positively related to foliation level. Densities of new recruits in the shrubland showed a unimodal response to canopy structure and cover: the highest densities were associated with canopies presenting low and medium foliation levels (providing 71 and 82% shade, respectively), while high foliation levels (93% shade) and open spaces among canopies were characterized by very low densities. A related field experiment using shading nets revealed that seedling survival rates followed a similar unimodal pattern, with the highest survival (ca 60%) detected in moderate shade (70%), twice as much as in full sun, and the lowest survival (ca 10%) observed in extreme shade (90%). These results support the study hypothesis on age-dependent interactions. Thus, in a semi-arid shrubland ecosystem, the transition of the "nurse shrub" from "young" to "old" stage can shift facilitation to interference. Hence, the age structure of established shrub populations determines a) the availability of suitable sites for seedling recruitment and b) the balance between facilitation versus interference effects on seedling establishment. [source] Nitrogen fixation in seagrass meadows: Regulation, plant,bacteria interactions and significance to primary productivityECOLOGY LETTERS, Issue 1 2000D.T. Welsh The rhizosphere sediments of seagrasses are generally a site of intense nitrogen fixation activity and this can provide a significant source of "new" nitrogen for the growth of the plants. In this paper, I review the data concerning nitrogen fixation in seagrass ecosystems, the transfer of the fixed nitrogen from the bacteria to the plants and its contribution to the overall productivity of seagrasses in different climatic zones. The relationship between the plants and diazotrophic heterotrophic bacteria in the rhizosphere is discussed, particularly focusing on the potentially important role of nitrogen-fixing, sulphate-reducing bacteria. The regulation of nitrogen fixation rates in the rhizosphere by photosynthetically driven oxygen and fixed carbon release by the plant roots and rhizomes, and the availability of ammonium in the porewater, is assessed. Finally, the hypothesis that a mutualistic or symbiotic association exists between the seagrasses and heterotrophic nitrogen fixers in the rhizosphere, based on the mutual exchange of fixed carbon and nitrogen, is discussed. [source] Speciation and Environmental Fate of Chromium in Rivers Contaminated with Tannery EffluentsENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 2 2007J. Dominik Abstract Redox and size speciation of chromium in rivers contaminated with tannery wastewater was carried out to provide insight into its transport and removal mechanisms. Total chromium was determined with Inductively Coupled Plasma-Mass Spectrometry and Cr,(VI) with Catalytic Adsorption Stripping Voltammetry. For the size speciation, particles were retained with a cartridge filter (cut-off 1.2,,m) and the total filterable fraction was further fractionated with Tangential Flow Filtration to determine the concentrations of chromium associated with the High Molecular Weight Colloidal (HMWC), Low Molecular Weight Colloidal (LMWC) and Truly Dissolved (TD) fractions. Two fluvial systems of similar sizes, but located in contrasting climatic zones, were selected for comparison: the Sebou-Fez system in Morocco and Dunajec River-Czorsztyn Reservoir system in Poland. Particulate Cr dominated in the Sebou-Fez system (about 90,%); while in the Dunajec-Czorsztyn system, it represented only 17,53,% of the total chromium in raw water. Still, the partition coefficients [Kd] were of the same magnitude. Chromium,(III) was the only form detected in Sebou-Fez, whereas in Dunajec-Czorsztyn Cr,(VI) was also present with its proportion increasing downstream from the input of tannery wastewater due to the preferential removal of Cr,(III). In the filtered water in Morocco a large fraction of Cr occurred in the HMWC fraction (50,70,%) at the two most contaminated sites, while the LMWC and TD forms prevailed at the non-contaminated sites in the Sebou River. At a very high concentration, in the water in the proximity of tanneries (well above the theoretical saturation level) Cr precipitated as polynuclear Cr-hydroxide. In Dunajec-Czorsztyn, the partition of Cr,(III) was approximately equal between the HMWC, LMWC and TD fractions, in contrast to Cr,(VI) which occurred almost exclusively in the TD fraction. In both systems, Cr,(III) was rapidly removed from the water to the sediments. The confluence of the Sebou with the Fez and the Czorsztyn reservoir trapped efficiently Cr,(III) preventing its spreading over long distances. Cr,(VI) showed conservative behavior and bypassed the Czorsztyn Reservoir. This study provides a first set of data on the partitioning of Cr,(III) and Cr,(VI) between the particulate, the colloidal and truly dissolved fractions in fluvial systems contaminated with tannery effluents. It also suggests that, in these systems, truly dissolved Cr,(III) can be adequately modeled from the total filterable concentrations. [source] Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature?ENVIRONMENTAL MICROBIOLOGY, Issue 7 2009Lucas J. Stal Summary Approximately 50% of the global natural fixation of nitrogen occurs in the oceans supporting a considerable part of the new primary production. Virtually all nitrogen fixation in the ocean occurs in the tropics and subtropics where the surface water temperature is 25°C or higher. It is attributed almost exclusively to cyanobacteria. This is remarkable firstly because diazotrophic cyanobacteria are found in other environments irrespective of temperature and secondly because primary production in temperate and cold oceans is generally limited by nitrogen. Cyanobacteria are oxygenic phototrophic organisms that evolved a variety of strategies protecting nitrogenase from oxygen inactivation. Free-living diazotrophic cyanobacteria in the ocean are of the non-heterocystous type, namely the filamentous Trichodesmium and the unicellular groups A,C. I will argue that warm water is a prerequisite for these diazotrophic organisms because of the low-oxygen solubility and high rates of respiration allowing the organism to maintain anoxic conditions in the nitrogen-fixing cell. Heterocystous cyanobacteria are abundant in freshwater and brackish environments in all climatic zones. The heterocyst cell envelope is a tuneable gas diffusion barrier that optimizes the influx of both oxygen and nitrogen, while maintaining anoxic conditions inside the cell. It is not known why heterocystous cyanobacteria are absent from the temperate and cold oceans and seas. [source] THE CONTRIBUTION OF AN HOURGLASS TIMER TO THE EVOLUTION OF PHOTOPERIODIC RESPONSE IN THE PITCHER-PLANT MOSQUITO, WYEOMYIA SMITHIIEVOLUTION, Issue 10 2003W. E. Bradshaw Abstract Photoperiodism, the ability to assess the length of day or night, enables a diverse array of plants, birds, mammals, and arthropods to organize their development and reproduction in concert with the changing seasons in temperate climatic zones. For more than 60 years, the mechanism controlling photoperiodic response has been debated. Photoperiodism may be a simple interval timer, that is, an hourglasslike mechanism that literally measures the length of day or night or, alternatively, may be an overt expression of an underlying circadian oscillator. Herein, we test experimentally whether the rhythmic response in Wyeomyia smithii indicates a causal, necessary relationship between circadian rhythmicity and the evolutionary modification of photoperiodic response over the climatic gradient of North America, or may be explained by a simple interval timer. We show that a day-interval timer is sufficient to predict the photoperiodic response of W. smithii over this broad geographic range and conclude that rhythmic responses observed in classical circadian-based experiments alone cannot be used to infer a causal role for circadian rhythmicity in the evolution of photoperiodic time measurement. More importantly, we argue that the pursuit of circadian rhyth-micity as the central mechanism that measures the duration of night or day has distracted researchers from consideration of the interval-timing processes that may actually be the target of natural selection linking internal photoperiodic time measurement to the external seasonal environment. [source] Modeled interactive effects of precipitation, temperature, and [CO2] on ecosystem carbon and water dynamics in different climatic zonesGLOBAL CHANGE BIOLOGY, Issue 9 2008YIQI LUO Abstract Interactive effects of multiple global change factors on ecosystem processes are complex. It is relatively expensive to explore those interactions in manipulative experiments. We conducted a modeling analysis to identify potentially important interactions and to stimulate hypothesis formulation for experimental research. Four models were used to quantify interactive effects of climate warming (T), altered precipitation amounts [doubled (DP) and halved (HP)] and seasonality (SP, moving precipitation in July and August to January and February to create summer drought), and elevated [CO2] (C) on net primary production (NPP), heterotrophic respiration (Rh), net ecosystem production (NEP), transpiration, and runoff. We examined those responses in seven ecosystems, including forests, grasslands, and heathlands in different climate zones. The modeling analysis showed that none of the three-way interactions among T, C, and altered precipitation was substantial for either carbon or water processes, nor consistent among the seven ecosystems. However, two-way interactive effects on NPP, Rh, and NEP were generally positive (i.e. amplification of one factor's effect by the other factor) between T and C or between T and DP. A negative interaction (i.e. depression of one factor's effect by the other factor) occurred for simulated NPP between T and HP. The interactive effects on runoff were positive between T and HP. Four pairs of two-way interactive effects on plant transpiration were positive and two pairs negative. In addition, wet sites generally had smaller relative changes in NPP, Rh, runoff, and transpiration but larger absolute changes in NEP than dry sites in response to the treatments. The modeling results suggest new hypotheses to be tested in multifactor global change experiments. Likewise, more experimental evidence is needed for the further improvement of ecosystem models in order to adequately simulate complex interactive processes. [source] Variation in litterfall-climate relationships between coniferous and broadleaf forests in EurasiaGLOBAL ECOLOGY, Issue 2 2004Chunjiang Liu ABSTRACT Aim, The objectives of this study were to determine the relationships between climatic factors and litterfall in coniferous and broadleaf forests in Eurasia and to explore the difference in litterfall between coniferous and broadleaf forests as related to climate at a continental scale. Location, We have used data from across Eurasia. Methods, The relationships between litterfall and climatic factors were examined using linear regression analysis of a compilation of published data from coniferous and broadleaf forests in Eurasia. Results, The relationships between litterfall and climatic factors show that in the temperate, subtropical, and tropical areas, broadleaf forests had higher litterfall than coniferous ones, whilst the opposite was found for boreal forests. Combining all climatic zones, a multiple regression analysis using annual mean temperature (T) and annual precipitation (P) as independent variables gave an adjusted R2 () of 0.272 for total litterfall in coniferous forests (n = 199, P < 0.001), 0.498 for broadleaf litterfall (n = 240, P < 0.001), and 0.535 for combined coniferous and broadleaf litterfall (n = 439, P < 0.001). The linear models for broadleaf stands have significantly higher coefficients for T and P than those for coniferous ones but the intercepts were similar. Thus, litterfall in broadleaf forests increased faster with T and P than that in coniferous forests. Further, a transformation of temperature and precipitation to relative units showed that a relative-unit change in T had a larger impact than P on total litterfall in broadleaf forests. The results indicate that at a continental scale, climatic controls over litterfall differ between coniferous and broadleaf forests. Conclusions, A relative unit change in annual mean temperature has a greater effect on litterfall compared to the same change in annual precipitation across the Eurasian forests. Further, the higher response to T for broadleaf forests indicates a difference in climate control between coniferous and broadleaf forests at a continental scale, and consequently different litterfall responses to climate change. [source] Environmental and Varietal Influences on the Fatty Acid Composition of Rapeseed, Soybeans and SunflowersJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 1 2010M. Werteker Abstract The fatty acid (FA) composition of oil crops is of some importance under technological as well as under nutritional aspects. The influence of temperature on this parameter in rapeseed, soybeans and sunflowers was investigated under practical agricultural conditions, whereby varietal variations were taken into account. The analysed plant material originated from variety testing trials located in different climatic zones of Austria. As a measure of the climatic conditions of a location, the mean temperature of the last 30 days before harvest was calculated. Despite the low temperature differences between the various locations, moderate but significant negative correlations between temperature and the share of linolenic (18 : 3), respectively, linoleic (18 : 2) acid on the whole quantity of FAs in rapeseed (R˛ = 0.18,0.42), soybeans (R˛ = 0.11,0.13) and sunflowers (R˛ = 0.15) were found. Furthermore, there was a good negative correlation in the case of sunflower seeds between temperature and oil level (R˛ = 0.45). The environmental influence on the share of polyunsaturated FAs differed between the different species. The results show that quality of vegetable oils is as well a question of environment as of variety. [source] Isolation of entomopathogenic fungi from the soil and their pathogenicity to two fruit fly species (Diptera: Tephritidae)JOURNAL OF APPLIED ENTOMOLOGY, Issue 9-10 2008P. Sookar Abstract The occurrence of deuteromycetous entomopathogenic fungi was determined by examining 224 soil samples from 19 locations in three climatic zones of Mauritius. Three sites were sampled per location: one site under vegetables cultivation, one site under sugar cane plantation and one natural site each within 1 km of each other. Soil samples were baited with the waxmoth larvae Galleria mellonella L. and incubated in the dark at 15, 20, 25 or 30°C for 7, 14 and 21 days. Entomopathogenic fungi were isolated from 77 out of 224 (38.6%) soil samples. Metarhizium anisopliae was isolated from 42 (18.8%) samples, Beauveria bassiana from 24 (10.7%), Metarhizium spp. and Paecilomyces fumosoroseus from 5 (2.2%) each and Beauveria spp. from 1 (0.4%). It was observed that M. anisopliae was isolated more frequently from soils under vegetables as compared to soils under sugarcane or habitat with natural vegetation. Beauveria bassiana was isolated more frequently at the lowest incubation temperature (15°C) while M. anisopliae isolates were recovered more frequently at higher temperatures (25 and 30°C). The pathogenicity of seven isolates of M. anisopliae, five isolates of B. bassiana and two isolates of P. fumosoroseus towards the adults of Bactrocera zonata and Bactrocera cucurbitae was tested by topical application of conidial suspension of 1 × 106 conidia/ml. All the isolates tested were pathogenic to the two fruit fly species. Mortality of B. zonata varied between 12.0 and 98.0% and between 2.0 and 94.0% in B. cucurbitae at 5 days post-treatment. Our results suggest that entomopathogenic fungi present locally, could be integrated for the control of B. zonata and B. cucurbitae. [source] Earlywood vessel size of oak as a potential proxy for spring precipitation in mesic sitesJOURNAL OF BIOGEOGRAPHY, Issue 12 2008Patrick Fonti Abstract Aim, In this study, we evaluate the importance of the mean earlywood vessel size of oaks as a potential proxy for climate in mesic areas. Location, The study was conducted in Switzerland at three forest sites dominated by oak (Quercus petraea and Q. pubescens). The three sites were in different climatic zones, varying mainly in terms of precipitation regime. Methods, Three 50-year-long site chronologies of mean earlywood vessel size and tree-ring widths were obtained at each site and related to monthly meteorological records in order to identify the main variables controlling growth. The responses of mean vessel size to climate were compared with those of the width variables to evaluate the potential climatic information recorded by the earlywood vessels. Results, The results show that the mean vessel size has a different and stronger response to climate than ring-width variables, although its common signal and year-to-year variability are lower. This response is better in particular at mesic sites, where it is linked to precipitation during spring, i.e. at the time of vessel formation, and is probably related to the occurrence of only a few processes controlling vessel growth, whereas radial increment is controlled by multiple and varying factors. Main conclusions, The mean earlywood vessel size of oak appears to be a promising proxy for future climate reconstructions of mesic sites, where radial growth is not controlled by a single limiting factor. [source] A world-wide study of high altitude treeline temperaturesJOURNAL OF BIOGEOGRAPHY, Issue 5 2004Christian Körner Abstract Aim, At a coarse scale, the treelines of the world's mountains seem to follow a common isotherm, but the evidence for this has been indirect so far. Here we aim at underpinning this with facts. Location, We present the results of a data-logging campaign at 46 treeline sites between 68° N and 42° S. Methods, We measured root-zone temperatures with an hourly resolution over 1,3 years per site between 1996 and 2003. Results, Disregarding taxon-, landuse- or fire-driven tree limits, high altitude climatic treelines are associated with a seasonal mean ground temperature of 6.7 °C (±0.8 SD; 2.2 K amplitude of means for different climatic zones), a surprisingly narrow range. Temperatures are higher (7,8 °C) in the temperate and Mediterranean zone treelines, and are lower in equatorial treelines (5,6 °C) and in the subarctic and boreal zone (6,7 °C). While air temperatures are higher than soil temperatures in warm periods, and are lower than soil temperatures in cold periods, daily means of air and soil temperature are almost the same at 6,7 °C, a physics driven coincidence with the global mean temperature at treeline. The length of the growing season, thermal extremes or thermal sums have no predictive value for treeline altitude on a global scale. Some Mediterranean (Fagus spp.) and temperate South Hemisphere treelines (Nothofagus spp.) and the native treeline in Hawaii (Metrosideros) are located at substantially higher isotherms and represent genus-specific boundaries rather than boundaries of the life-form tree. In seasonal climates, ground temperatures in winter (absolute minima) reflect local snow pack and seem uncritical. Main conclusions, The data support the hypothesis of a common thermal threshold for forest growth at high elevation, but also reflect a moderate region and substantial taxonomic influence. [source] Estimated migration rates under scenarios of global climate changeJOURNAL OF BIOGEOGRAPHY, Issue 7 2002Jay R. Malcolm Aim Greenhouse-induced warming and resulting shifts in climatic zones may exceed the migration capabilities of some species. We used fourteen combinations of General Circulation Models (GCMs) and Global Vegetation Models (GVMs) to investigate possible migration rates required under CO2 -doubled climatic forcing. Location Global. Methods Migration distances were calculated between grid cells of future biome type x and nearest same-biome-type cells in the current climate. In `base-case' calculations, we assumed that 2 × CO2 climate forcing would occur in 100 years, we used ten biome types and we measured migration distances as straight-line distances ignoring water barriers and human development. In sensitivity analyses, we investigated different time periods of 2 × CO2 climate forcing, more narrowly defined biomes and barriers because of water bodies and human development. Results In the base-case calculations, average migration rates varied significantly according to the GVM used (BIOME3 vs. MAPSS), the age of the GCM (older- vs. newer-generation GCMs), and whether or not GCMs included sulphate cooling or CO2 fertilization effects. However, high migration rates (, 1000 m year,1) were relatively common in all models, consisting on average of 17% grid cells for BIOME3 and 21% for MAPSS. Migration rates were much higher in boreal and temperate biomes than in tropical biomes. Doubling of the time period of 2 × CO2 forcing reduced these areas of high migration rates to c. 12% of grid cells for both BIOME3 and MAPSS. However, to obtain migration rates in the Boreal biome that were similar in magnitude to those observed for spruce when it followed the retreating North American Glacier, a radical increase in the period of warming was required, from 100 to >1000 years. A reduction in biome area by an order of magnitude increased migration rates by one to three orders of magnitude, depending on the GVM. Large water bodies and human development had regionally important effects in increasing migration rates. Main conclusions In conclusion, evidence from coupled GCMs and GVMs suggests that global warming may require migration rates much faster than those observed during post-glacial times and hence has the potential to reduce biodiversity by selecting for highly mobile and opportunistic species. Several poorly understood factors that are expected to influence the magnitude of any such reduction are discussed, including intrinsic migrational capabilities, barriers to migration, the role of outlier populations in increasing migration rates, the role of climate in setting range limits and variation in species range sizes. [source] Carbon limitation in treesJOURNAL OF ECOLOGY, Issue 1 2003Christian Körner Summary 1The ongoing enrichment of the atmosphere with CO2 raises the question of whether growth of forest trees, which represent close to 90% of the global biomass carbon, is still carbon limited at current concentrations of close to 370 p.p.m. As photosynthesis of C3 plants is not CO2 -saturated at such concentrations, enhanced ,source activity' of leaves could stimulate ,sink activity' (i.e. growth) of plants, provided other resources and developmental controls permit. I explore current levels of non-structural carbon in trees in natural forests in order to estimate the potential for a carbon-driven stimulation of growth. 2The concentration of non-structural carbohydrates (NSC) in tree tissues is considered a measure of carbon shortage or surplus for growth. A periodic reduction of NSC pools indicates either that carbon demand exceeds con-current supply, or that both source and sink activity are low. A steady, very high NSC concentration is likely to indicate that photosynthesis fully meets, or even exeeds, that needed for growth (surplus assimilates accumulate). 3The analysis presented here considers data for mature trees in four climatic zones: the high elevation treeline (in Mexico, the Alps and Northern Sweden), a temperate lowland forest of central Europe, Mediterranean sclerophyllous woodland and a semideciduous tropical forest in Panama. 4In all four climatic regions, periods of reduced or zero growth show maximum C-loading of trees (source activity exceeding demand), except for dry midsummer in the Mediterranean. NSC pools are generally high throughout the year, and are not significantly affected by mass fruiting episodes. 5It is concluded that, irrespective of the reason for its periodic cessation, growth does not seem to be limited by carbon supply. Instead, in all the cases examined, sink activity and its direct control by the environment or developmental constraints, restricts biomass production of trees under current ambient CO2 concentrations. 6The current carbohydrate charging of mature wild trees from the tropics to the cold limit of tree growth suggests that little (if any) leeway exists for further CO2 -fertilization effects on growth. [source] Contrasting genetic structures of two parasitic nematodes, determined on the basis of neutral microsatellite markers and selected anthelmintic resistance markersMOLECULAR ECOLOGY, Issue 24 2009A. SILVESTRE Abstract For the first time, the neutral genetic relatedness of natural populations of Trichostrongylid nematodes was investigated in relation to polymorphism of the ,-tubulin gene, which is selected for anthelminthic treatments. The aim of the study was to assess the contribution of several evolutionary processes: migration and genetic drift by neutral genetic markers and selection by anthelminthic treatments on the presence of resistance alleles at ,-tubulin. We studied two nematode species (Teladorsagia circumcincta and Haemonchus contortus) common in temperate climatic zones; these species are characterized by contrasting life history traits. We studied 10 isolated populations of goat nematode parasites: no infected adult goat had been exchanged after the herds were established. Beta-tubulin polymorphism was similar in these two species. One and two ,-tubulin alleles from T. circumcincta and H. contortus respectively were shared by several populations. Most of the ,-tubulin alleles were ,private' alleles. No recombination between alleles was detected in BZ-resistant alleles from T. circumcincta and H. contortus. The T. circumcincta populations have not diverged much since their isolation (FST <0.08), whereas H. contortus displayed marked local genetic differentiation (FST ranging from 0.08 to 0.18). These findings suggest that there are severe bottlenecks in the H. contortus populations, possibly because of their reduced abundance during unfavourable periods and their high reproductive rate, which allows the species to persist even after severe population reduction. Overall, the data reported contradict the hypothesis of the origin of ,-tubulin resistance alleles in these populations from a single mutational event, but two other hypotheses (recurrent mutation generating new alleles in isolated populations and the introduction of existing alleles) emerge as equally likely. [source] Implications of Genotypic Diversity and Phenotypic Plasticity in the Ecophysiological Success of CAM Plants, Examined by Studies on the Vegetation of Madagascar,PLANT BIOLOGY, Issue 3 2001M. Kluge Abstract: On the basis of ,13C-values, genotypic diversity and phenotypic plasticity of CAM behaviour in plants of the Malagasy vegetation is surveyed. The study compares CAM patterns performed in the wild on the levels of genera (Kalanchoë [Crassulaceae], Angraecum [Orchidaceae], Lissochilus [Orchidaceae] and Rhipsalis [Cactaceae]), on the level of a family (Didiereaceae) and finally on the level of a common growth form, namely in leafless orchids. For Rhipsalis, also non-Malagasy species were included in the comparison. The genus Kalanchoë was found to be dominated by species representing the CAM-physiotype with CO2 fixation taking place only during the night, whereas the CAM/C3- and the C3-physiotypes (with limited intrinsic CAM potential) were less frequent. The opposite holds true for Angraecum. In the genus Rhipsalis, in the Didiereacean family and in the leafless orchids only the CAM-physiotype is represented. The photosynthetic physiotypes of CAM plants were found to be related to the environmental conditions of the habitat. That is, strong CAM performers are typically abundant in the dry climatic zones or at otherwise dry niches, species of the C3-physiotype (possibly with weak intrinsic capability of CAM performance) are distributed at humid sites and those of the CAM/C3-physiotype occupy sites with medium and changing exposure to stress. Phenotypic plasticity of CAM, as indicated by the intraspecific variability of the ,13C-values, was lower in the CAM-physiotype compared with the CAM/C3-physiotype. Our data support the view that strong stress leads to the dominance of highly adapted specialists among the CAM plants, with low phenotypic plasticity of the photosynthetic behaviour, whereas medium stress advances the unfolding of plastic CAM behaviour. Moreover, the data suggest that genera comprising all three physiotypes (Kalanchoë, Angraecum) are dispersed all over Madagascar, whilst groups comprising only strong CAM performers are restricted to limited areas or special types of habitats. This suggests that both genotypic diversity and phenotypic plasticity are important factors for the ecophysiological success of CAM. [source] Origin, diffusion and reproduction of the giant reed (Arundo donax L.): a promising weedy energy cropANNALS OF APPLIED BIOLOGY, Issue 2 2010C. Mariani Giant reed (Arundo donax) is a promising energy crop of the Mediterranean areas. It has long been associated with humans and has been cultivated in Asia, southern Europe, North Africa and the Middle East for thousands of years. It is a perennial herbaceous plant (Poaceae) found in grasslands and wetlands throughout a wide range of climatic zones. Amplified fragment length polymorphism (AFLP) analysis was used to assess genetic inter and intrarelationships between A. donax and other Arundo species. Furthermore, the development of the sexual apparatus was analysed to understand the basis of sterility in the accession examined. The dendrograms obtained by phenetic and cladistic analysis support the monophyletic origin of giant reed and suggest that it originated in Asia and began to spread into the Mediterranean without traces of hybridisation with the other Arundo species. In particular, samples from Mediterranean areas are characterisd by a lower gene diversity and incidence of rare AFLP fragments indicating that these populations are recent in origin. Moreover, results indicate the occurrence of post-meiotic alterations in the ovule and pollen developmental pathway. Thus, the success of giant reed can be attributed mainly to its rapid clonal spread by rhizome extension, flood dispersal of rhizome and culm fragments. [source] Variation in the impact of exotic grasses on native plant composition in relation to fire across an elevation gradient in HawaiiAUSTRAL ECOLOGY, Issue 5 2000Carla M. D'Antonio Abstract The impact that an exotic species can have on the composition of the community it enters is a function of its abundance, its particular species traits and characteristics of the recipient community. In this study we examined species composition in 14 sites burned in fires fuelled by non-indigenous C4 grasses in Hawaii Volcanoes National Park, Hawaii. We considered fire intensity, time since fire, climatic zone of site, unburned grass cover, unburned native cover and identity of the most abundant exotic grass in the adjacent unburned site as potential predictor variables of the impact of fire upon native species. We found that climatic zone was the single best variable for explaining variation in native cover among burned sites and between burned and unburned pairs. Fire in the eastern coastal lowlands had a very small effect on native plant cover and often stimulated native species regeneration, whereas fire in the seasonal submontane zone consistently caused a decline in native species cover and almost no species were fire tolerant. The dominant shrub, Styphelia tameiameia, in particular was fire intolerant. The number of years since fire, fire intensity and native cover in reference sites were not significantly correlated with native species cover in burned sites. The particular species of grass that carried the fire did however, have a significant effect on native species recovery. Where the African grass Melinis minutiflora was a dominant or codominant species, fire impacts were more severe than where it was absent regardless of climate zone. Overall, the impacts of exotic grass-fuelled fires on native species composition and cover in seasonally dry Hawaiian ecosystems was context specific. This specificity is best explained by differences between the climatic zones in which fire occurred. Elevation was the main physical variable that differed among the climatic zones and it alone could explain a large percentage of the variation in native cover among sites. Rainfall, by contrast, did not vary systematically with elevation. Elevation is associated with differences in composition of the native species assemblages. In the coastal lowlands, the native grass Heteropogon contortus, was largely responsible for positive changes in native cover after fire although other native species also increased. Like the exotic grasses, this species is a perennial C4 grass. It is lacking in the submontane zone and there are no comparable native species there and almost all native species in the submontane zone were reduced by fire. The lack of fire tolerant species in the submontane zone thus clearly contributes to the devastating impact of fire upon native cover there. [source] |