Climatic Gradient (climatic + gradient)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Transpiration and stomatal conductance across a steep climate gradient in the southern Rocky Mountains

ECOHYDROLOGY, Issue 3 2008
Nate G. McDowell
Abstract Transpiration (E) is regulated over short time periods by stomatal conductance (Gs) and over multi-year periods by tree- and stand-structural factors such as leaf area, height and density, with upper limits ultimately set by climate. We tested the hypothesis that tree structure, stand structure and Gs together regulate E per ground area (Eg) within climatic limits using three sites located across a steep climatic gradient: a low-elevation Juniperus woodland, a mid-elevation Pinus forest and a high-elevation Picea forest. We measured leaf area : sapwood area ratio (Al : As), height and ecosystem sapwood area : ground area ratio (As : Ag) to assess long-term structural adjustments, tree-ring carbon isotope ratios (,13C) to assess seasonal gas exchange, and whole-tree E and Gs to assess short-term regulation. We used a hydraulic model based on Darcy's law to interpret the interactive regulation of Gs and Eg. Common allometric dependencies were found only in the relationship of sapwood area to diameter for pine and spruce; there were strong site differences for allometric relationships of sapwood area to basal area, Al : As and As : Ag. On a sapwood area basis, E decreased with increasing elevation, but this pattern was reversed when E was scaled to the crown using Al : As. Eg was controlled largely by As : Ag, and both Eg and Gs declined from high- to low-elevation sites. Observation-model comparisons of Eg, Gs and ,13C were strongest using the hydraulic model parameterized with precipitation, vapour pressure deficit, Al : As, height, and As : Ag, supporting the concept that climate, Gs, tree- and stand-structure interact to regulate Eg. Copyright © 2008 John Wiley & Sons, Ltd. [source]


THE CONTRIBUTION OF AN HOURGLASS TIMER TO THE EVOLUTION OF PHOTOPERIODIC RESPONSE IN THE PITCHER-PLANT MOSQUITO, WYEOMYIA SMITHII

EVOLUTION, Issue 10 2003
W. E. Bradshaw
Abstract Photoperiodism, the ability to assess the length of day or night, enables a diverse array of plants, birds, mammals, and arthropods to organize their development and reproduction in concert with the changing seasons in temperate climatic zones. For more than 60 years, the mechanism controlling photoperiodic response has been debated. Photoperiodism may be a simple interval timer, that is, an hourglasslike mechanism that literally measures the length of day or night or, alternatively, may be an overt expression of an underlying circadian oscillator. Herein, we test experimentally whether the rhythmic response in Wyeomyia smithii indicates a causal, necessary relationship between circadian rhythmicity and the evolutionary modification of photoperiodic response over the climatic gradient of North America, or may be explained by a simple interval timer. We show that a day-interval timer is sufficient to predict the photoperiodic response of W. smithii over this broad geographic range and conclude that rhythmic responses observed in classical circadian-based experiments alone cannot be used to infer a causal role for circadian rhythmicity in the evolution of photoperiodic time measurement. More importantly, we argue that the pursuit of circadian rhyth-micity as the central mechanism that measures the duration of night or day has distracted researchers from consideration of the interval-timing processes that may actually be the target of natural selection linking internal photoperiodic time measurement to the external seasonal environment. [source]


Decadal change in wetland,woodland boundaries during the late 20th century reflects climatic trends

GLOBAL CHANGE BIOLOGY, Issue 8 2010
DAVID A. KEITH
Abstract Wetlands are important and restricted habitats for dependent biota and play vital roles in landscape function, hydrology and carbon sequestration. They are also likely to be one of the most sensitive components of the terrestrial biosphere to global climate change. An understanding of relationships between wetland persistence and climate is imperative for predicting, mitigating and adapting to the impacts of future climate change on wetland extent and function. We investigated whether mire wetlands had contracted, expanded or remained stable during 1960,2000. We chose a study area encompassing a regional climatic gradient in southeastern Australia, specifically to avoid confounding effects of water extraction on wetland hydrology and extent. We first characterized trends in climate by examining data from local weather stations, which showed a slight increase in precipitation and marked decline in pan evaporation over the relevant period. Remote sensing of vegetation boundaries showed a marked lateral expansion of mires during 1961,1998, and a corresponding contraction of woodland. The spatial patterns in vegetation change were consistent with the regional climatic gradient and showed a weaker co-relationship to fire history. Resource exploitation, wildland fires and autogenic mire development failed to explain the observed expansion of mire vegetation in the absence of climate change. We therefore conclude that the extent of mire wetlands is likely to be sensitive to variation in climatic moisture over decadal time scales. Late 20th-century trends in climatic moisture may be related primarily to reduced irradiance and/or reduced wind speeds. In the 21st century, however, net climatic moisture in this region is projected to decline. As mires are apparently sensitive to hydrological change, we anticipate lateral contraction of mire boundaries in coming decades as projected climatic drying eventuates. This raises concerns about the future hydrological functions, carbon storage capacity and unique biodiversity of these important ecosystems. [source]


Indication of antagonistic interaction between climate change and erosion on plant species richness and soil properties in semiarid Mediterranean ecosystems

GLOBAL CHANGE BIOLOGY, Issue 2 2009
PATRICIO GARCÍA-FAYOS
Abstract We analyzed the consequences of climate change and the increase in soil erosion, as well as their interaction on plant and soil properties in semiarid Mediterranean shrublands in Eastern Spain. Current models on drivers of biodiversity change predict an additive or synergistic interaction between drivers that will increase the negative effects of each one. We used a climatic gradient that reproduces the predicted climate changes in temperature and precipitation for the next 40 years of the wettest and coldest end of the gradient; we also compared flat areas with 20° steep hillslopes. We found that plant species richness and plant cover are negatively affected by climate change and soil erosion, which in turn negatively affects soil resistance to erosion, nutrient content and water holding capacity. We also found that plant species diversity correlates weakly with plant cover but strongly with soil properties related to fertility, water holding capacity and resistance to erosion. Conversely, these soil properties correlate weaker with plant species cover. The joint effect of climate change and soil erosion on plant species richness and soil characteristics is antagonistic. That is, the absolute magnitude of change is smaller than the sum of both effects. However, there is no interaction between climate change and soil erosion on plant cover and their effects fit the additive model. The differences in the interaction model between plant cover and species richness supports the view that several soil properties are more linked to the effect that particular plant species have on soil processes than to the quantity and quality of the plant cover and biomass they support. Our findings suggest that plant species richness is a better indicator than plant cover of ecosystems services related with soil development and protection to erosion in semiarid Mediterranean climates. [source]


Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate

GLOBAL ECOLOGY, Issue 3 2009
Yangjian Zhang
ABSTRACT Aim, To examine the global pattern of the net primary production (NPP)/gross primary production (GPP) ratio of the Earth's land area along geographical and climatic gradients. Location, The global planetary ecosystem. Methods, The 4-year average annual NPP/GPP ratio of the Earth's land area was calculated using 2000,03 Moderate Resolution Imaging Spectroradiometer (MODIS) data. The global pattern of the NPP/GPP ratio was investigated by comparing it among each typical terrestrial ecosystem and plotting it along a geographical and climatic gradient, including latitude, altitude, temperature and precipitation. Results, The global terrestrial ecosystem had an average NPP/GPP ratio value of 0.52 with minor variation from 2000 to 2003. However, the NPP/GPP ratio showed considerable spatial variation associated with ecosystem type, geographical location and climate. Densely vegetated ecosystems had a lower NPP/GPP ratio than sparsely vegetated ecosystems. Forest ecosystems had a lower NPP/GPP ratio than shrub and herbaceous ecosystems. Geographically, the NPP/GPP ratio increased with altitude. In the Southern Hemisphere, the NPP/GPP ratio decreased along latitude from 30° to 10° and it exhibited high fluctuation in the Northern Hemisphere. Climatically, the NPP/GPP ratio exhibited a decreasing trend along enhanced precipitation when it was less than 2300 mm year,1 and a static trend when the annual precipitation was over 2300 mm. The NPP/GPP ratio showed a decreasing trend along temperature when it was between ,20 °C and 10 °C, and showed an increasing trend along rising temperature when it was between ,10 °C and 20 °C. Within each ecosystem, the NPP/GPP ratio revealed a similar trend to the global trend along temperature and precipitation. Conclusions, The NPP/GPP ratio exhibited a pattern depending on the main climatic characteristics such as temperature and precipitation and geographical factors such as latitude and altitude. The findings of this research challenge the widely held assumption that the NPP/GPP ratio is consistent regardless of ecosystem type. [source]


Plant species richness in continental southern Siberia: effects of pH and climate in the context of the species pool hypothesis

GLOBAL ECOLOGY, Issue 5 2007
Milan Chytrý
ABSTRACT Aim, Many high-latitude floras contain more calcicole than calcifuge vascular plant species. The species pool hypothesis explains this pattern through an historical abundance of high-pH soils in the Pleistocene and an associated opportunity for the evolutionary accumulation of calcicoles. To obtain insights into the history of calcicole/calcifuge patterns, we studied species richness,pH,climate relationships across a climatic gradient, which included cool and dry landscapes resembling the Pleistocene environments of northern Eurasia. Location, Western Sayan Mountains, southern Siberia. Methods, Vegetation and environmental variables were sampled at steppe, forest and tundra sites varying in climate and soil pH, which ranged from 3.7 to 8.6. Species richness was related to pH and other variables using linear models and regression trees. Results, Species richness is higher in areas with warmer winters and at medium altitudes that are warmer than the mountains and wetter than the lowlands. In treeless vegetation, the species richness,pH relationship is unimodal. In tundra vegetation, which occurs on low-pH soils, richness increases with pH, but it decreases in steppes, which have high-pH soils. In forests, where soils are more acidic than in the open landscape, the species richness,pH relationship is monotonic positive. Most species occur on soils with a pH of 6,7. Main conclusions, Soil pH in continental southern Siberia is strongly negatively correlated with precipitation, and species richness is determined by the opposite effects of these two variables. Species richness increases with pH until the soil is very dry. In dry soils, pH is high but species richness decreases due to drought stress. Thus, the species richness,pH relationship is unimodal in treeless vegetation. Trees do not grow on the driest soils, which results in a positive species richness,pH relationship in forests. If modern species richness resulted mainly from the species pool effects, it would suggest that historically common habitats had moderate precipitation and slightly acidic to neutral soils. [source]


Small mammal (rodents and lagomorphs) European biogeography from the Late Oligocene to the mid Pliocene

GLOBAL ECOLOGY, Issue 4 2007
Olivier Maridet
ABSTRACT Aim, To analyse the fossil species assemblages of rodents and lagomorphs from the European Neogene in order to assess what factors control small mammal biogeography at a deep-time evolutionary time-scale. Location, Western Europe: 626 fossil-bearing localities located within 31 regions and distributed among 18 successive biochronological units ranging from c. 27 Ma (million years ago; Late Oligocene) to c. 3 Ma (mid Pliocene). Methods, Taxonomically homogenized pooled regional assemblages are compared using the Raup and Crick index of faunal similarity; then, the inferred similarity matrices are visualized as neighbour-joining trees and by projecting the statistically significant interregional similarities and dissimilarities onto palaeogeographical maps. The inferred biogeographical patterns are analysed and discussed in the light of known palaeogeographical and palaeoclimatic events. Results, Successive time intervals with distinct biogeographical contexts are identified. Prior to c. 18 Ma (Late Oligocene and Early Miocene), a relative faunal homogeneity (high interregional connectivity) is observed all over Europe, a time when major geographical barriers and a weak climatic gradient are known. Then, from the beginning of the Middle Miocene onwards, the biogeography is marked by a significant decrease in interregional faunal affinities which matches a drastic global climatic degradation and leads, in the Late Miocene (c. 11 Ma), to a marked latitudinal pattern of small mammal distribution. In spite of a short rehomogenization around the Miocene/Pliocene boundary (6,4 Ma), the biogeography of small mammals in the mid Pliocene (c. 3 Ma) finally closely reflects the extant situation. Main conclusions, The resulting biogeographical evolutionary scheme indicates that the extant endemic situation has deep historical roots corresponding to global tectonic and climatic events acting as primary drivers of long-term changes. The correlation of biogeographical events with climatic changes emphasizes the prevalent role of the climate over geography in generating heterogeneous biogeographical patterns at the continental scale. [source]


The influence of atmospheric circulation at different spatial scales on winter drought variability through a semi-arid climatic gradient in Northeast Spain

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 11 2006
Sergio M. Vicente-Serrano
Abstract This paper analyses the spatial and temporal variability of winter droughts in a semi-arid geographic gradient in Northeast Spain, from the Pyrenees in the north to the Mediterranean coastland in the south. Droughts that occurred between 1952 and 1999 were analysed by means of the Standardised Precipitation Index (SPI). The influence of the weather-type frequency and of the general North Atlantic atmospheric circulation patterns was analysed. The results indicate that winter droughts show an important spatial variability in the study area, differentiating three well-defined patterns. These correspond to the Pyrenees, the centre of the Ebro Valley, and the Mediterranean coastland. General negative trends in winter SPI have been found, which are indicative of the increase in winter drought conditions in the study area. Nevertheless, important spatial differences have also been recorded. Dominant north,south gradients in the influence of weather types are shown. Moreover, the negative trends in winter-SPI values agree with the negative trend in the frequency of the weather types prone to cause precipitation, such as the C, SW and W weather types and the increase in the frequency of A weather types. Nevertheless, in the Mediterranean coastland, the positive trend in SPI values agrees with the increase in the frequency of weather types of the east (E, SE), which are prone to cause precipitation in this area. Interannual variations in the frequency of the different weather types have been highly determined by different general atmospheric circulation patterns, mainly the North Atlantic Oscillation (NAO). Nevertheless, the correlation between the time series of weather-type frequency and the winter SPI is higher than that found between the SPI and the NAO. Thus, although the interannual NAO variability explains a high percentage of the interannual differences in the frequency of different weather types, it is not sufficient to explain the spatial and temporal variability of droughts, which respond better to atmospheric variability at more detailed (synoptic) spatial scales. Copyright © 2006 Royal Meteorological Society. [source]


Factors Affecting Macroinvertebrate Richness and Diversity in Portuguese Streams: a Two-Scale Analysis

INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 2 2004
Manuel A. S. Graça
Abstract We analysed the spatial patterns in macroinvertebrate taxon richness and abundance at two scales: sampling unit and basin. We sampled 12 stream sites in three zones of Portugal, differing in climate geomorphology and water chemistry. At a sampling unit scale, substratum organic matter content, depth and the dominant size of substratum particles were correlated with numbers of taxa and individuals. We propose that the number of taxa at a small scale depends on the number of individuals, which in turn is the result of organic matter accumulation, hydrologic and substratum characteristics. The environmental parameters better explaining the large-scale biological data were temperature, minimum size of substratum particles and pH. Regardless of the relative importance of variable types and mechanisms regulating stream invertebrates along the climatic gradient, rivers from the North and Centre appeared to be richer in taxa than the typically Mediterranean streams in the South. [source]


Patterns of density, diversity, and the distribution of migratory strategies in the Russian boreal forest avifauna

JOURNAL OF BIOGEOGRAPHY, Issue 11 2008
Russell Greenberg
Abstract Aim, Comparisons of the biotas in the Palaearctic and Nearctic have focused on limited portions of the two regions. The purpose of this study was to assess the geographic pattern in the abundance, species richness, and importance of different migration patterns of the boreal forest avifauna of Eurasia from Europe to East Asia as well as their relationship to climate and forest productivity. We further examine data from two widely separated sites in the New World to see how these conform to the patterns found in the Eurasian system. Location, Boreal forest sites in Russia and Canada. Methods, Point counts were conducted in two to four boreal forest habitats at each of 14 sites in the Russian boreal forest from near to the Finnish border to the Far East, as well as at two sites in boreal Canada. We examined the abundance and species richness of all birds, and specific migratory classes, against four gradients (climate, primary productivity, latitude, and longitude). We tested for spatial autocorrelation in both dependent and independent variables using Moran's I to develop spatial correlograms. For each migratory class we used maximum likelihood to fit models, first assuming uncorrelated residuals and then assuming spatially autocorrelated residuals. For models assuming unstructured residuals we again generated correlograms on model residuals to determine whether model fitting removed spatial autocorrelation. Models were compared using Akaike's information criterion, adjusted for small sample size. Results, Overall abundance was highest at the eastern and western extremes of the survey region and lowest at the continent centre, whereas the abundance of tropical and short-distance migrants displayed an east,west gradient, with tropical migrants increasing in abundance in the east (and south), and short-distance migrants in the west. Although overall species richness showed no geographic pattern, richness within migratory classes showed patterns weaker than, but similar to, their abundance patterns described above. Overall abundance was correlated with climate variables that relate to continentality. The abundances of birds within different migration strategies were correlated with a second climatic gradient , increasing precipitation from west to east. Models using descriptors of location generally had greater explanatory value for the abundance and species-richness response variables than did those based on climate data and the normalized difference vegetation index (NDVI). Main conclusions, The distribution patterns for migrant types were related to both climatic and locational variables, and thus the patterns could be explained by either climatic regime or the accessibility of winter habitats, both historically and currently. Non-boreal wintering habitat is more accessible from both the western and eastern ends than from the centre of the boreal forest belt, but the tropics are most accessible from the eastern end of the Palaearctic boreal zone, in terms of distance and the absence of geographical barriers. Based on comparisons with Canadian sites, we recommend that future comparative studies between Palaearctic and Nearctic faunas be focused more on Siberia and the Russian Far East, as well as on central and western Canada. [source]


The forests of presettlement New England, USA: spatial and compositional patterns based on town proprietor surveys

JOURNAL OF BIOGEOGRAPHY, Issue 10-11 2002
Charles V. Cogbill
Abstract Aim, This study uses the combination of presettlement tree surveys and spatial analysis to produce an empirical reconstruction of tree species abundance and vegetation units at different scales in the original landscape. Location, The New England study area extends across eight physiographic sections, from the Appalachian Mountains to the Atlantic Coastal Plain. The data are drawn from 389 original towns in what are now seven states in the north-eastern United States. These towns have early land division records which document the witness trees growing in the town before European settlement (c. seventeenth to eighteenth century ad). Methods, Records of witness trees from presettlement surveys were collated from towns throughout the study area (1.3 × 105 km2). Tree abundance was averaged over town-wide samples of multiple forest types, integrating proportions of taxa at a local scale (102 km2). These data were summarized into genus groups over the sample towns, which were then mapped [geographical information system (GIS)], classified (Cluster Analysis) and ordinated [detrended correspondence analysis (DCA)]. Modern climatic and topographic variables were also derived from GIS analyses for each town and all town attributes were quantitatively compared. Distributions of both individual species and vegetation units were analysed and displayed for spatial analysis of vegetation structure. Results, The tally of 153,932 individual tree citations show a dominant latitudinal trend in the vegetation. Spatial patterns are concisely displayed as pie charts of genus composition arrayed on sampled towns. Detailed interpolated frequency surfaces show spatial patterns of range and abundance of the dominant taxa. Oak, spruce, hickory and chestnut reach distinctive range limits within the study area. Eight vegetation clusters are distinguished. The northern vegetation is a continuous geographical sequence typified by beech while the southern vegetation is an amorphous group typified by oak. Main conclusions, The wealth of information recorded in the New England town presettlement surveys is an ideal data base to elucidate the natural patterns of vegetation over an extensive spatial area. The timing, town-wide scale, expansive coverage, quantitative enumeration and unbiased estimates are critical advantages of proprietor lotting surveys in determining original tree distributions. This historical,geographical approach produces a vivid reconstruction of the natural vegetation and species distributions as portrayed on maps. The spatial, vegetational and environmental patterns all demonstrate a distinct ,tension zone' separating ,northern hardwood' and ,central hardwood' towns. The presettlement northern hardwood forests, absolutely dominated by beech, forms a continuum responding to a complex climatic gradient of altitude and latitude. The oak forests to the south are distinguished by non-zonal units, probably affected by fire. Although at the continental scale, the forests seem to be a broad transition, at a finer scale they respond to topography such as the major valleys or the northern mountains. This study resets some preconceptions about the original forest, such as the overestimation of the role of pine, hemlock and chestnut and the underestimation of the distinctiveness of the tension zone. Most importantly, the forests of the past and their empirical description provide a basis for many ecological, educational and management applications today. [source]


Soil degradation and soil surface process intensities on abandoned fields in Mediterranean mountain environments

LAND DEGRADATION AND DEVELOPMENT, Issue 5 2008
M. Seeger
Abstract The Pyrenean and Pre-Pyrenean mountain areas have been intensively used at least since roman times, but nowadays depopulation has lead to widespread land abandonment without a steering land-management. Vegetation recovery is weak in most abandoned fields. Soil formation and characteristics are conditioned by this fact, and for this, soils show past degradation processes and are mostly predominant factors for continuing land degradation or restoration. Three study areas were set up along a climatic gradient with increasing summer water deficit in the sub-humid zone between the Central Pyrenees and Pre-Pyrenees. Soil survey combined with experiments for the determination of infiltration, runoff and erosion were applied for understanding the degradation history and the future development of the soils. All areas are dominated by Entisols, but also Inceptisols and Alfisols are found, and even soils with hydromorphic features. The soils show signs of heavy erosion. The parental material determines the nutrient supply and the general chemical properties. All sites show a weak water storing capacity, as a result of the removal of fine material by erosion and due to the depletion of soil organic matter. In addition, infiltration capacity and runoff generation are high within the studied areas, averaging between 27 and 37 per cent. The driest area studied shows an ongoing trend to degradation, with high erosion rates combined with a high degradations status of the soil. The other areas are characterised by a patchy pattern of soil degradation and regradation processes. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Present and potential distribution of invasive garlic mustard (Alliaria petiolata) in North America

DIVERSITY AND DISTRIBUTIONS, Issue 4 2002
Erik Welk
Abstract. This paper demonstrates the use of a bioclimatic model mapped over geographical regions as a tool for spatially refined risk assessment for the establishment of non-indigenous plants with invasive behaviour. Drawing on the relationship between plant distribution and climate, the approach uses gridded spatial interpolated monthly means of temperature and precipitation linked with accurate maps of general native distribution ranges to predict the long-term potential of a plant species to invade a certain region. The ascertained potential for establishment is illustrated by the example of garlic mustard (Alliaria petiolata[M. Bieb.] Cavara & Grande) in North America. The first step is to calculate and visualize the number of populated grid cells along climatic gradients in frequency diagrams for the general native distribution range. Interpretations of the response curves recorded are used for assessing apparent climatic range boundaries. Modelling was gradually optimized based on the results of experience-based interpretations and by examining omission and over-representation errors. The obtained climatic model of the range of A. petiolata shows considerable congruencies with its mapped, native Eurasian range. Degrees of climatic similarity between North America and the native range of A. petiolata were calculated with the help of GIS methodology and were used to assess the regionally different likelihood of establishment in North America of the invasive species under consideration. [source]


Integrating physiology, population dynamics and climate to make multi-scale predictions for the spread of an invasive insect: the Argentine ant at Haleakala National Park, Hawaii

ECOGRAPHY, Issue 1 2010
Stephen Hartley
Mechanistic models for predicting species' distribution patterns present particular advantages and challenges relative to models developed from statistical correlations between distribution and climate. They can be especially useful for predicting the range of invasive species whose distribution has not yet reached equilibrium. Here, we illustrate how a physiological model of development for the invasive Argentine ant can be connected to differences in micro-site suitability, population dynamics and climatic gradients; processes operating at quite different spatial scales. Our study is located in the subalpine shrubland of Haleakala National Park, Hawaii, where the spread of Argentine ants Linepithema humile has been documented for the past twenty-five years. We report four main results. First, at a microsite level, the accumulation of degree-days recorded in potential ant nest sites under bare ground or rocks was significantly greater than under a groundcover of grassy vegetation. Second, annual degree-days measured where population boundaries have not expanded (456,521,degree-days), were just above the developmental requirements identified from earlier laboratory studies (445,degree-days above 15.9°C). Third, rates of population expansion showed a strong linear relationship with annual degree-days. Finally, an empirical relationship between soil degree-days and climate variables mapped at a broader scale predicts the potential for future range expansion of Argentine ants at Haleakala, particularly to the west of the lower colony and the east of the upper colony. Variation in the availability of suitable microsites, driven by changes in vegetation cover and ultimately climate, provide a hierarchical understanding of the distribution of Argentine ants close to their cold-wet limit of climatic tolerances. We conclude that the integration of physiology, population dynamics and climate mapping holds much promise for making more robust predictions about the potential spread of invasive species. [source]


Why do mountains support so many species of birds?

ECOGRAPHY, Issue 3 2008
Adriana Ruggiero
Although topographic complexity is often associated with high bird diversity at broad geographic scales, little is known about the relative contributions of geomorphologic heterogeneity and altitudinal climatic gradients found in mountains. We analysed the birds in the western mountains of the New World to examine the two-fold effect of topography on species richness patterns, using two grains at the intercontinental extent and within temperate and tropical latitudes. Birds were also classified as montane or lowland, based on their overall distributions in the hemisphere. We estimated range in temperature within each cell and the standard deviation in elevation (topographic roughness) based on all pixels within each cell. We used path analysis to test for the independent effects of topographic roughness and temperature range on species richness while controlling for the collinearity between topographic variables. At the intercontinental extent, actual evapotranspiration (AET) was the primary driver of species richness patterns of all species taken together and of lowland species considered separately. In contrast, within-cell temperature gradients strongly influenced the richness of montane species. Regional partitioning of the data also suggested that range in temperature either by itself or acting in combination with AET had the strongest "effect" on montane bird species richness everywhere. Topographic roughness had weaker "effects" on richness variation throughout, although its positive relationship with richness increased slightly in the tropics. We conclude that bird diversity gradients in mountains primarily reflect local climatic gradients. Widespread (lowland) species and narrow-ranged (montane) species respond similarly to changes in the environment, differing only in that the richness of lowland species correlates better with broad-scale climatic effects (AET), whereas mesoscale climatic variation accounts for richness patterns of montane species. Thus, latitudinal and altitudinal gradients in species richness can be explained through similar climatic-based processes, as has long been argued. [source]


Bilby distribution and fire: a test of alternative models of habitat suitability in the Tanami Desert, Australia

ECOGRAPHY, Issue 6 2007
Richard Southgate
The distribution of the bilby Macrotis lagotis was assessed in the Tanami Desert using stratified random plots, repetitively sampled transects, aerial survey transects, and ground truth plots. Compared to a previous assessment of distribution, the extent of occurrence has changed little in the last 20 yr. However, the area of occupancy is small relative to the extent of occurrence and <25% of the current geographic range has bilby sign <20 km apart. Generalised linear modelling was used to determine the strength of association between bilby occurrence and habitat variables and identify refugia characteristics. Four competing candidate models were examined to determine whether bilby occurrence associated significantly with productive substrates and introduced herbivores, the distribution of key predator species, the pattern of fire, and climatic gradients including rainfall and temperature. For the entire study area, bilby presence associated most strongly with variables of mean annual rainfall, substrate type and the probability of dingo occurrence. Proximity to recently burnt habitat formed a significant predictor of bilby occurrence in a model derived for a reduced part of the study area where most sign was found. The work suggested that the current frameworks underpinning understanding of biotic distributions in arid Australia are deficient, and that climatic gradients, lateritic and rocky systems, and predators need to be incorporated into our thinking in the future. The extent of occurrence based on outlier records from opportunistic reports provided a misleading indication of the true status of the bilby. [source]


Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate

GLOBAL ECOLOGY, Issue 3 2009
Yangjian Zhang
ABSTRACT Aim, To examine the global pattern of the net primary production (NPP)/gross primary production (GPP) ratio of the Earth's land area along geographical and climatic gradients. Location, The global planetary ecosystem. Methods, The 4-year average annual NPP/GPP ratio of the Earth's land area was calculated using 2000,03 Moderate Resolution Imaging Spectroradiometer (MODIS) data. The global pattern of the NPP/GPP ratio was investigated by comparing it among each typical terrestrial ecosystem and plotting it along a geographical and climatic gradient, including latitude, altitude, temperature and precipitation. Results, The global terrestrial ecosystem had an average NPP/GPP ratio value of 0.52 with minor variation from 2000 to 2003. However, the NPP/GPP ratio showed considerable spatial variation associated with ecosystem type, geographical location and climate. Densely vegetated ecosystems had a lower NPP/GPP ratio than sparsely vegetated ecosystems. Forest ecosystems had a lower NPP/GPP ratio than shrub and herbaceous ecosystems. Geographically, the NPP/GPP ratio increased with altitude. In the Southern Hemisphere, the NPP/GPP ratio decreased along latitude from 30° to 10° and it exhibited high fluctuation in the Northern Hemisphere. Climatically, the NPP/GPP ratio exhibited a decreasing trend along enhanced precipitation when it was less than 2300 mm year,1 and a static trend when the annual precipitation was over 2300 mm. The NPP/GPP ratio showed a decreasing trend along temperature when it was between ,20 °C and 10 °C, and showed an increasing trend along rising temperature when it was between ,10 °C and 20 °C. Within each ecosystem, the NPP/GPP ratio revealed a similar trend to the global trend along temperature and precipitation. Conclusions, The NPP/GPP ratio exhibited a pattern depending on the main climatic characteristics such as temperature and precipitation and geographical factors such as latitude and altitude. The findings of this research challenge the widely held assumption that the NPP/GPP ratio is consistent regardless of ecosystem type. [source]


Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation

GLOBAL ECOLOGY, Issue 1 2009
Z. Y. Yuan
ABSTRACT Aim Nutrient resorption from senescing leaves is an important mechanism of nutrient conservation in plants, but the patterns of nutrient resorption at the global scale are unknown. Because soil nutrients vary along climatic gradients, we hypothesize that nutrient resorption changes with latitude, temperature and precipitation. Location Global. Methods We conducted a meta-analysis on a global data set collected from published literature on nitrogen (N) and phosphorus (P) resorption of woody plants. Results For all data pooled, both N resorption efficiency (NRE) and P resorption efficiency (PRE) were significantly related to latitude, mean annual temperature (MAT) and mean annual precipitation (MAP): NRE increased with latitude but decreased with MAT and MAP. In contrast, PRE decreased with latitude but increased with MAT and MAP. When functional groups (shrub versus tree, coniferous versus broadleaf and evergreen versus deciduous) were examined individually, the patterns of NRE and PRE in relation to latitude, MAT and MAP were generally similar. Main conclusions The relationships between N and P resorption and latitude, MAT and MAP indicate the existence of geographical patterns of plant nutrient conservation strategies in relation to temperature and precipitation at the global scale, particularly for PRE, which can be an indicator for P limitation in the tropics and selective pressure shaping the evolution of plant traits. Our results suggest that, although the magnitude of plant nutrient resorption might be regulated by local factors such as substrate, spatial patterns are also controlled by temperature or precipitation. [source]


The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America

GLOBAL ECOLOGY, Issue 1 2009
Hong Qian
ABSTRACT Aim Spatial turnover of species, or beta diversity, varies in relation to geographical distance and environmental conditions, as well as spatial scale. We evaluated the explanatory power of distance, climate and topography on beta diversity of mammalian faunas of North America in relation to latitude. Location North America north of Mexico. Methods The study area was divided into 313 equal-area quadrats (241 × 241 km). Faunal data for all continental mammals were compiled for these quadrats, which were divided among five latitudinal zones. These zones were comparable in terms of latitudinal and longitudinal span, climatic gradients and elevational gradients. We used the natural logarithm of the Jaccard index (lnJ) to measure species turnover between pairs of quadrats within each latitudinal zone. The slope of lnJ in relation to distance was compared among latitudinal zones. We used partial regression to partition the variance in lnJ into the components uniquely explained by distance and by environmental differences, as well as jointly by distance and environmental differences. Results Mammalian faunas of North America differ more from each other at lower latitudes than at higher latitudes. Regression models of lnJ in relation to distance, climatic difference and topographic difference for each zone demonstrated that these variables have high explanatory power that diminishes with latitude. Beta diversity is higher for zones with higher mean annual temperature, lower seasonality of temperature and greater topographic complexity. For each latitudinal zone, distance and environmental differences explain a greater proportion of the variance in lnJ than distance, climate or topography does separately. Main conclusions The latitudinal gradient in beta diversity of North American mammals corresponds to a macroclimatic gradient of decreasing mean annual temperature and increasing seasonality of temperature from south to north. Most of the variance in spatial turnover is explained by distance and environmental differences jointly rather than distance, climate or topography separately. The high predictive power of geographical distance, climatic conditions and topography on spatial turnover could result from the direct effects of physical limiting factors or from ecological and evolutionary processes that are also influenced by the geographical template. [source]


Bergmann's rule does not apply to geometrid moths along an elevational gradient in an Andean montane rain forest

GLOBAL ECOLOGY, Issue 1 2004
Gunnar Brehm
ABSTRACT Aim, Bergmann's rule generally predicts larger animal body sizes with colder climates. We tested whether Bergmann's rule at the interspecific level applies to moths (Lepidoptera: Geometridae) along an extended elevational gradient in the Ecuadorian Andes. Location, Moths were sampled at 22 sites in the province Zamora-Chinchipe in southern Ecuador in forest habitats ranging from 1040 m to 2677 m above sea level. Methods, Wingspans of 2282 male geometrid moths representing 953 species were measured and analysed at the level of the family Geometridae, as well as for the subfamily Ennominae with the tribes Boarmiini and Ourapterygini, and the subfamily Larentiinae with the genera Eois, Eupithecia and Psaliodes. Results, Bergmann's rule was not supported since the average wingspan of geometrid moths was negatively correlated with altitude (r = ,0.59, P < 0.005). The relationship between body size and altitude in Geometridae appears to be spurious because species of the subfamily Larentiinae are significantly smaller than species of the subfamily Ennominae and simultaneously increase in their proportion along the gradient. A significant decrease of wingspan was also found in the ennomine tribe Ourapterygini, but no consistent body size patterns were found in the other six taxa studied. In most taxa, body size variation increases with altitude, suggesting that factors acting to constrain body size might be weaker at high elevations. Main conclusions, The results are in accordance with previous studies that could not detect consistent body size patterns in insects at the interspecific level along climatic gradients. [source]


Latitudinal population differentiation in phenology, life history and flower morphology in the perennial herb Lythrum salicaria

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2002
K. Olsson
Abstract In plants with a wide distribution, phenological characters can be expected to vary clinally along climatic gradients, whereas other characters important for adaptation to local biotic and abiotic factors may vary in a more mosaic fashion. We used common-garden experiments and controlled crosses to examine population differentiation in phenology, life history and morphology in the perennial herb Lythrum salicaria along a latitudinal transect through Sweden (57°N to 66°N). Northern populations initiated growth and flowering earlier, flowered for a shorter period, were shorter, produced more and larger winter buds, and were older at first reproduction than southern populations. Flower morphology varied significantly among populations, but was, with the exception of calyx length, not significantly related to latitude of origin. Survival in the common garden (at 63°49,N) was positively correlated with latitude of origin and the size and number of winter buds produced in the preceding year. The results suggest that the among-population differences in phenology and life history have evolved in response to latitudinal variation in length of the growing season. Further studies are required to determine whether population differentiation in flower morphology is maintained by selection. [source]


Evolvability of between-year seed dormancy in populations along an aridity gradient

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 4 2010
CHRISTIAN LAMPEI
Under global climate change, adaptation to new conditions is crucial for plant species persistence. This requires the ability to evolve in traits that are correlated with changing climatic variables. We studied between-year seed dormancy, which correlates with environmental variability, and tested for clinal trends in its evolvability along an aridity gradient in Israel. We conducted a germination experiment under five irrigation levels with two dryland winter annuals (Biscutella didyma, Bromus fasciculatus) from four sites along the gradient. Species differed in means and evolvability of dormancy. Biscutella had high dormancy, which significantly increased with aridity but decreased with higher irrigation. In Bromus, dormancy was low, similar among populations, and only marginally affected by irrigation. Evolvability in Biscutella was high and varied among populations, without a clinal trend along the gradient. Conversely, in Bromus, trait evolvability was low and declined with increasing aridity. We argue that changes in evolvability along climatic gradients depend on the relative intensity of stabilizing selection. This may be high in Bromus and not only depends on environmental stress, but also on variability. Our findings point to the importance of measuring evolvability of climate-related traits across different natural and artificial environments and for many coexisting species. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 924,934. [source]