Climate System (climate + system)

Distribution by Scientific Domains


Selected Abstracts


On the use of generalized linear models for interpreting climate variability

ENVIRONMETRICS, Issue 7 2005
Richard E. Chandler
Abstract Many topical questions in climate research can be reduced to either of two related problems: understanding how various different components of the climate system affect each other, and quantifying changes in the system. This article aims to justify the addition of generalized linear models to the climatologist's toolkit, by demonstrating that they offer an intuitive and flexible approach to such problems. In particular, we provide some suggestions as to how ,typical' climatological data structures may be represented within the GLM framework. Recurring themes include methods for space,time data and the need to cope with large datasets. The ideas are illustrated using a dataset of monthly U.S. temperatures. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Mechanistic links between climate and fisheries along the east coast of the United States: explaining population outbursts of Atlantic croaker (Micropogonias undulatus)

FISHERIES OCEANOGRAPHY, Issue 1 2007
JONATHAN A. HARE
Abstract Climate has been linked to variation in marine fish abundance and distribution, but often the mechanistic processes are unknown. Atlantic croaker (Micropogonias undulatus) is a common species in estuarine and coastal areas of the mid-Atlantic and southeast coasts of the U.S. Previous studies have identified a correlation between Atlantic croaker abundance and winter temperatures in Chesapeake Bay, and have determined thermal tolerances of juveniles. Here we re-examine the hypothesis that winter temperature variability controls Atlantic croaker population dynamics. Abundance indices were analyzed at four life history stages from three regions along the east coast of the U.S. Correlations suggest that year-class strength is decoupled from larval supply and is determined by temperature-linked, overwinter survival of juveniles. Using a relation between air and water temperatures, estuarine water temperature was estimated from 1930 to 2002. Periods of high adult catch corresponded with warm winter water temperatures. Prior studies indicate that winter temperature along the east coast is related to the North Atlantic Oscillation (NAO); variability in catch is also correlated with the NAO, thereby demonstrating a link between Atlantic croaker dynamics, thermal limited overwinter survival, and the larger climate system of the North Atlantic. We hypothesize that the environment drives the large-scale variability in Atlantic croaker abundance and distribution, but fishing and habitat loss decrease the resiliency of the population to periods of poor environmental conditions and subsequent weak year classes. [source]


Pan-glacial,a third state in the climate system

GEOLOGY TODAY, Issue 3 2009
Paul F. Hoffman
Radiative energy-balance models reveal that Earth could exist in any one of three discrete climate states,,non-glacial' (no continental ice-sheets), ,glacial-interglacial' (high-latitude ice-sheets) or ,pan-glacial' (ice-sheets at all latitudes),yet only the first two were represented in Phanerozoic time. There is mounting evidence that pan-glacial states existed at least twice in the Cryogenian (roughly 750,635 Ma), the penultimate period of the Neoproterozoic. Consensus is lacking on whether the world ocean was fully glaciated (,snowball' model) or largely unglaciated (,slushball' model). The first appearances of multicellular animal fossils (diapause eggs and embryos in China, and sponge-specific biomarkers in Oman), being closely associated with the last pan-glacial state, revive speculation that environmental forces had a hand in the origin of metazoa. [source]


Microscale vegetation-soil feedback boosts hysteresis in a regional vegetation,climate system

GLOBAL CHANGE BIOLOGY, Issue 5 2008
RUUD H. H. JANSSEN
Abstract It has been hypothesized that a positive feedback between vegetation cover and monsoon circulation may lead to the existence of two alternative stable states in the Sahara region: a vegetated state with moderate precipitation and a desert state with low precipitation. This could explain the sudden onset of desertification in the region about 5000 years ago. However, other models suggest that the effect of vegetation on the precipitation may be insufficient to produce this behavior. Here, we show that inclusion of the microscale feedback between soil and vegetation in the model greatly amplifies the nonlinearity, causing alternative stable states and considerable hysteresis even if the effect of vegetation on precipitation is moderate. On the other hand, our analysis suggests that self-organized vegetation patterns known from models that only focus at the microscale plant,soil feedback will be limited to a narrower range of conditions due to the regional scale climate-feedback. This implies that in monsoon areas such as the Western Sahara self-organized vegetation patterns are predicted to be less common than in areas without monsoon circulation such as Central Australia. [source]


Is the Sonoran Desert losing its cool?

GLOBAL CHANGE BIOLOGY, Issue 12 2005
Jeremy L. Weiss
Abstract Freezing temperatures strongly influence vegetation in the hottest desert of North America, in part determining both its overall boundary and distributions of plant species within. To evaluate recent variability of freezing temperatures in this context, minimum temperature data from weather stations in the Sonoran Desert are examined. Data show widespread warming trends in winter and spring, decreased frequency of freezing temperatures, lengthening of the freeze-free season, and increased minimum temperatures per winter year. Local land use and multidecadal modes of the global climate system such as the Pacific decadal oscillation and the Atlantic multidecadal oscillation do not appear to be principal drivers of this warming. Minimum temperature variability in the Sonoran Desert does, however, correspond to global temperature variability attributed to human-dominated global warming. With warming expected to continue at faster rates throughout the 21st century, potential ecological responses may include contraction of the overall boundary of the Sonoran Desert in the south-east and expansion northward, eastward, and upward in elevation, as well as changes to distributions of plant species within and other characteristics of Sonoran Desert ecosystems. Potential trajectories of vegetation change in the Sonoran Desert region may be affected or made more difficult to predict by uncertain changes in warm season precipitation variability and fire. Opportunities now exist to investigate ecosystem response to regional climate disturbance, as well as to anticipate and plan for continued warming in the Sonoran Desert region. [source]


Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years

GLOBAL CHANGE BIOLOGY, Issue 8 2004
Victor Brovkin
Abstract We assess the role of changing natural (volcanic, aerosol, insolation) and anthropogenic (CO2 emissions, land cover) forcings on the global climate system over the last 150 years using an earth system model of intermediate complexity, CLIMBER-2. We apply several datasets of historical land-use reconstructions: the cropland dataset by Ramankutty & Foley (1999) (R&F), the HYDE land cover dataset of Klein Goldewijk (2001), and the land-use emissions data from Houghton & Hackler (2002). Comparison between the simulated and observed temporal evolution of atmospheric CO2 and ,13CO2 are used to evaluate these datasets. To check model uncertainty, CLIMBER-2 was coupled to the more complex Lund,Potsdam,Jena (LPJ) dynamic global vegetation model. In simulation with R&F dataset, biogeophysical mechanisms due to land cover changes tend to decrease global air temperature by 0.26°C, while biogeochemical mechanisms act to warm the climate by 0.18°C. The net effect on climate is negligible on a global scale, but pronounced over the land in the temperate and high northern latitudes where a cooling due to an increase in land surface albedo offsets the warming due to land-use CO2 emissions. Land cover changes led to estimated increases in atmospheric CO2 of between 22 and 43 ppmv. Over the entire period 1800,2000, simulated ,13CO2 with HYDE compares most favourably with ice core during 1850,1950 and Cape Grim data, indicating preference of earlier land clearance in HYDE over R&F. In relative terms, land cover forcing corresponds to 25,49% of the observed growth in atmospheric CO2. This contribution declined from 36,60% during 1850,1960 to 4,35% during 1960,2000. CLIMBER-2-LPJ simulates the land cover contribution to atmospheric CO2 growth to decrease from 68% during 1900,1960 to 12% in the 1980s. Overall, our simulations show a decline in the relative role of land cover changes for atmospheric CO2 increase during the last 150 years. [source]


Impact of CO2 concentration changes on the biosphere-atmosphere system of West Africa

GLOBAL CHANGE BIOLOGY, Issue 12 2002
GUILING WANG
Abstract Vegetation dynamics plays a critical role in causing the decadal variability of precipitation over the Sahel region of West Africa. However, the potential impact of changes in CO2 concentration on vegetation dynamics and precipitation variability of this region has not been addressed by previous studies. In this paper, we explore the role of CO2 concentration in the regional climate system of West Africa using a zonally symmetric, synchronously coupled biosphere-atmosphere model. We first document the response of precipitation and vegetation to incremental changes of CO2 concentration; the impact of CO2 concentration on the variability of the regional biosphere-atmosphere system is then addressed using the second half of the twentieth century as an example. An increase of CO2 concentration causes the regional biosphere-atmosphere system to become wetter and greener, with the radiative effect of CO2 and improved plant-water relation dominant in the Sahelian grassland region and the direct enhancement of leaf carbon assimilation dominant in the tree-covered region to the south. Driven by the observed sea surface temperature (SST) of the tropical Atlantic Ocean during the period 1950,97 and with CO2 concentration prescribed at a pre-industrial level 300ppmv, the model simulates a persistent Sahel drought during the period of 1960s,1990s. The simulated drought takes place in the form of a transition of the coupled biosphere-atmosphere system from a wet/green regime in the 1950s to a dry/barren regime after the 1960s. This climate transition is triggered by SST forcing and materialized through vegetation-climate interactions. The same SST forcing does not produce such a persistent drought when a constant modern CO2 concentration of 350ppmv is specified, indicating that the biosphere-atmosphere system at higher CO2 level is more resilient to drought-inducing external forcings. This finding suggests that the regional climate in Sahel, which tends to alternate between dry and wet spells, may experience longer (or more frequent) wet episodes and shorter (or less frequent) dry episodes in the future than in the past. Our study has significant implications regarding the impact of climate change on regional socio-economic development. [source]


Modelled changes in arctic tundra snow, energy and moisture fluxes due to increased shrubs

GLOBAL CHANGE BIOLOGY, Issue 1 2002
Glen E. Liston
Abstract In arctic tundra, shrubs can significantly modify the distribution and physical characteristics of snow, influencing the exchanges of energy and moisture between terrestrial ecosystems and the atmosphere from winter into the growing season. These interactions were studied using a spatially distributed, physically based modelling system that represents key components of the land,atmosphere system. Simulations were run for 4 years, over a 4-km2 tundra domain located in arctic Alaska. A shrub increase was simulated by replacing the observed moist-tundra and wet-tundra vegetation classes with shrub-tundra; a procedure that modified 77% of the simulation domain. The remaining 23% of the domain, primarily ridge tops, was left as the observed dry-tundra vegetation class. The shrub enhancement increased the averaged snow depth of the domain by 14%, decreased blowing-snow sublimation fluxes by 68%, and increased the snowcover's thermal resistance by 15%. The shrub increase also caused significant changes in snow-depth distribution patterns; the shrub-enhanced areas had deeper snow, and the non-modified areas had less snow. This snow-distribution change influenced the timing and magnitude of all surface energy-balance components during snowmelt. The modified snow distributions also affected meltwater fluxes, leading to greater meltwater production late in the melt season. For a region with an annual snow-free period of approximately 90 days, the snow-covered period decreased by 11 days on the ridges and increased by 5 days in the shrub-enhanced areas. Arctic shrub increases impact the spatial coupling of climatically important snow, energy and moisture interactions by producing changes in both shrub-enhanced and non-modified areas. In addition, the temporal coupling of the climate system was modified when additional moisture held within the snowcover, because of less winter sublimation, was released as snowmelt in the spring. [source]


The effects of water table draw-down (as a surrogate for climate change) on the hydrology of a fen peatland, Canada

HYDROLOGICAL PROCESSES, Issue 17 2006
Peter N. Whittington
Abstract Hydrological response to climate change may alter the biogeochemical role that peatlands play in the global climate system, so an understanding of the nature and magnitude of this response is important. In 2002, the water table in a fen peatland near Quebec City was lowered by ,20 cm (Experimental site), and hydrological response was measured compared to Control (no manipulation) and Drained (previously drained c. 1994) sites. Because of the draw-down, the surface in the Experimental pool decreased 5, 15 and 20 cm in the ridge, lawn and mat, respectively, increasing bulk density by ,60% in the Experimental lawn. Hydraulic conductivity (K) generally decreased with depth and from Control (25,125 cm) 10,1 to 10,5 cm s,1 to Experimental (25,125 cm) 10,2 to 10,7 cm s,1 and to Drained (25,75 cm) 10,2 to 10,6 cm s,1. In similar topographic locations (ridge, lawn, mat), K trended Control > Experimental > Drained, usually by an order of magnitude at similar depths in similar topographic locations. Water table fluctuations in the Drained site averaged twice those of the Control site. The water table in the Control lawn remained at a stable depth relative to the surface (,, 1 cm) because the lawn peat floats with changes in water table position. However, the Drained lawn peat was more rigid because of the denser degraded peat, forcing the water to fluctuate relative to the surface and further enhancing peat decay and densification. This provides a positive feedback loop that could intensify further peat degradation, changing the carbon cycling dynamics. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Early 20th century Arctic warming in retrospect

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 9 2010
Kevin R. Wood
Abstract The major early 20th century climatic fluctuation (,1920,1940) has been the subject of scientific enquiry from the time it was detected in the 1920s. The papers of scientists who studied the event first-hand have faded into obscurity but their insights are relevant today. We review this event through a rediscovery of early research and new assessments of the instrumental record. Much of the inter-annual to decadal scale variability in surface air temperature (SAT) anomaly patterns and related ecosystem effects in the Arctic and elsewhere can be attributed to the superposition of leading modes of variability in the atmospheric circulation. Meridional circulation patterns were an important factor in the high latitudes of the North Atlantic during the early climatic fluctuation. Sea surface temperature (SST) anomalies that appeared during this period were congruent with low-frequency variability in the climate system but were themselves most likely the result of anomalous forcing by the atmosphere. The high-resolution data necessary to verify this hypothesis are lacking, but the consistency of multiple lines of evidence provides strong support. Our findings indicate that early climatic fluctuation is best interpreted as a large but random climate excursion imposed on top of the steadily rising global mean temperature associated with anthropogenic forcing. Copyright © 2009 Royal Meteorological Society [source]


Pattern hunting in climate: a new method for finding trends in gridded climate data

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 1 2007
A. Hannachi
Abstract Trends are very important in climate research and are ubiquitous in the climate system. Trends are usually estimated using simple linear regression. Given the complexity of the system, trends are expected to have various features such as global and local characters. It is therefore important to develop methods that permit a systematic decomposition of climate data into different trend patterns and remaining no-trend patterns. Empirical orthogonal functions and closely related methods, widely used in atmospheric science, are unable in general to capture trends because they are not devised for that purpose. The present paper presents a novel method capable of systematically capturing trend patterns from gridded data. The method is based on an eigenanalysis of the covariance/correlation matrix obtained using correlations between time positions of the sorted data, and trends are associated with the leading nondegenerate eigenvalues. Application to simple low-dimensional time series models and reanalyses data are presented and discussed. Copyright © 2006 Royal Meteorological Society. [source]


Measurement of climate complexity using sample entropy

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 15 2006
Li Shuangcheng
Abstract A climate system is a complex nonlinear system. Estimation of the complexity is of great interest in climatic forecast and prediction. In this paper, we propose the use of sample entropy (SampEn), an entropy-based algorithm, to measure the complexity of daily temperature series. Estimations of SampEn were calculated for 50 meteorological stations in the mountains of Southwest China, particularly in Yunnan Province. On the basis of these data, stations were grouped in climatically homogenous regions (climate provinces), and the spatial pattern of SampEn for each climate province was investigated. The SampEn value of spatial distribution of climate provinces reflects the varying degree of influence of the monsoonal air masses. High SampEn values occur in interactive regions of different air masses, owing to large regional differences in weather processes, while the southwest region is under the influence of the Southwest Monsoon leading to a homogenous climatic environment, low SampEn values and small spatial variations of SampEn. The results suggest that SampEn is an alternative nonlinear approach for analyzing and predicting complexity of climatic time series. Copyright © 2006 Royal Meteorological Society [source]


The impact of non-stationarities in the climate system on the definition of ,a normal wind year': a case study from the Baltic

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 6 2005
S. C. Pryor
Abstract Wind speeds over the Baltic significantly increased over the second half of the 20th century (C20th), with the majority of the increase being focused on the upper quartile of the wind speed distribution and in the southwest of the region. These changes have potentially profound implications for the wind energy resource. For example, based on the National Centers for Environmental Prediction,National Center for Atmospheric Research (NCEP,NCAR) reanalysis data it is shown that, owing to this non-stationarity, using the normalization period of 1987,98 to determine the wind resource (as in the Danish wind index) leads to overestimation of the wind energy index (and hence the wind energy resource) in western Denmark relative to 1958,2001 by approximately 10%. To address whether the increased prevalence of high wind speeds at the end of the C20th will be maintained in the future, we provide a first prognosis of annual wind indices from the HadCM3 coupled atmosphere,ocean general circulation model. The results suggest the 21st century (C21st) will be similar to the 1958,2001 period with respect to the wind energy density, but that the northeastern Baltic will exhibit slightly higher wind energy indices over the course of the C21st relative to the latter half of the C20th, whereas the southwest of the Baltic exhibits some evidence of declining wind indices towards the end of the C21st. These changes may indicate a tendency in HadCM3 towards more northerly tracking of mid-latitude cyclones in the future, possibly due to evolution of the North Atlantic oscillation. As a caveat to this finding, it should be noted that the NCEP,NCAR and European Centre for Medium-Range Weather Forecasts reanalysis data sets and HadCM3 simulations, although exhibiting commonalities during the period of overlap, differ quantitatively in terms of the spatial fields and empirical cumulative probability distributions at individual grid cells. Copyright © 2005 Royal Meteorological Society [source]


The role of the oceans in climate

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 10 2003
G. R. Bigg
Abstract The ocean is increasingly seen as a vital component of the climate system. It exchanges with the atmosphere large quantities of heat, water, gases, particles and momentum. It is an important part of the global redistribution of heat from tropics to polar regions keeping our planet habitable, particularly equatorward of about 30°. In this article we review recent work examining the role of the oceans in climate, focusing on research in the Third Assessment Report of the IPCC and later. We discuss the general nature of oceanic climate variability and the large role played by stochastic variability in the interaction of the atmosphere and ocean. We consider the growing evidence for biogeochemical interaction of climatic significance between ocean and atmosphere. Air,sea exchange of several radiatively important gases, in particular CO2, is a major mechanism for altering their atmospheric concentrations. Some more reactive gases, such as dimethyl sulphide, can alter cloud formation and hence albedo. Particulates containing iron and originating over land can alter ocean primary productivity and hence feedbacks to other biogeochemical exchanges. We show that not only the tropical Pacific Ocean basin can exhibit coupled ocean,atmosphere interaction, but also the tropical Atlantic and Indian Oceans. Longer lived interactions in the North Pacific and Southern Ocean (the circumpolar wave) are also reviewed. The role of the thermohaline circulation in long-term and abrupt climatic change is examined, with the freshwater budget of the ocean being a key factor for the degree, and longevity, of change. The potential for the Mediterranean outflow to contribute to abrupt change is raised. We end by examining the probability of thermohaline changes in a future of global warming. Copyright © 2003 Royal Meteorological Society [source]


Assessing future changes in extreme precipitation over Britain using regional climate model integrations

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 11 2001
P.D. Jones
Abstract In a changing climate it is important to understand how all components of the climate system may change. For many impact sectors, particularly those relating to flooding and water resources, changes in precipitation intensity and amount are much more important than changes in temperature. This study assesses possible changes in extreme precipitation intensities estimated through both quantile and return period analysis over Britain. Results using a regional climate model (with greenhouse gas changes following the IS92a scenario for 2080,2100) indicate dramatic increases in the heaviest precipitation events over Britain. The results provide information to alter design storm intensities to take future climate change into account, for structures/projects that have long life times. Copyright © 2001 Royal Meteorological Society [source]


Forty years of numerical climate modelling

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 9 2001
K. McGuffie
Abstract Climate modelling is now a mature discipline approaching its fortieth birthday. The need for valid climate forecasts has been underlined by the recognition that human activities are now modifying the climate. The complex nature of the climate system has resulted in the development of a surprisingly large array of modelling tools. Some are relatively simple, such as the earth systems and energy balance models (EBMs), while others are highly sophisticated models which challenge the fastest speeds of the most powerful supercomputers. Indeed, this discipline of the latter half of the twentieth century is so critically dependent on the availability of a means of undertaking powerful calculations that its evolution has matched that of the digital computer. The multi-faceted nature of the climate system demands high quality, and global observations and innovative parameterizations through which processes which cannot be described or calculated explicitly are captured to the extent deemed necessary. Interestingly, results from extremely simple, as well as highly complex and many intermediate model types are drawn upon today for effective formulation and evaluation of climate policies. This paper discusses some of the important developments during the first 40 years of climate modelling from the first models of the global atmosphere to today's models, which typically consist of integrated multi-component representations of the full climate system. The pressures of policy-relevant questions more clearly underline the tension between the need for evaluation against quality data and the unending pressure to improve spatial and temporal resolutions of climate models than at any time since the inception of climate modelling. Copyright © 2001 Royal Meteorological Society [source]


Seasonal and interannual variability in atmospheric turbidity over South Africa

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 5 2001
Helen C. Power
Abstract Aerosols affect climate by attenuating solar radiation and acting as cloud condensation nuclei. Despite their importance in the climate system, our understanding of the time-space variability of aerosols is fragmentary. Measurements and reliable estimates of atmospheric turbidity,the total column amount of aerosol,are scarce in most countries and this is especially true in the Southern Hemisphere. Very little is known about the seasonal, interannual and spatial variability of aerosols over the southern half of the globe. In this paper, we estimate monthly averaged atmospheric turbidity from surface climate data at eight locations in South Africa, regardless of cloud cover. Findings include new estimates of turbidity trends and variability over South Africa. Seasonal trends are evident at many stations, although there is no consistent trend. Over recent decades, turbidity has generally been stable at six of the eight stations. Our methodology can be applied at any location where the requisite climate data are available and, therefore, holds promise for a more complete, and possibly global, climatology of aerosols. Copyright © 2001 Royal Meteorological Society [source]


Two-way interactions between ocean biota and climate mediated by biogeochemical cycles

ISRAEL JOURNAL OF CHEMISTRY, Issue 1 2002
Hezi Gildor
Some of the two-way interactions between ocean biota and climate are mediated by biogeochemical cycles that link the different components of the climate system. As suggested by proxy records extracted from ice and ocean cores, by recent measurements, and by numerical models, such two-way interactions were likely major players in past climate variability on glacial,interglacial timescales, and may act to amplify or moderate an anthropogenically induced climate change in the near future. At present, our lack of understanding of these interactions hampers our ability to anticipate the consequences of possible anthropogenic climate change. In this article, we highlight some of the possible feedbacks between ocean biota and climate, reviewing some key biogeochemical processes and discussing mechanisms of two-way interactions. We also outline the need and strategies for continuing research aimed at advancing our understanding of these feedbacks and discuss their significance. [source]


Vegetation, environment, and time: The origination and termination of ecosystems

JOURNAL OF VEGETATION SCIENCE, Issue 5 2006
Stephen T. Jackson
Abstract Terrestrial ecosystems originate when particular plant species attain dominance at specific locations under specific environmental regimes. Ecosystems terminate, gradually or abruptly, when the dominant species or functional types are replaced by others, usually owing to environmental change or severe and irreversible disturbance. Assessing whether current ecosystems are sustainable in the face of future environmental change can be aided by examining the range of environmental variation those ecosystems have experienced in the past, and by determining the environmental conditions under which those ecosystems arose. The range of environmental variation depends on the time scale at which it is assessed. A narrow time span (e.g. 200,300 years) may underestimate the range of variation within which an ecosystem is sustainable, and it may also underestimate the risk of major transformation or disruption of that ecosystem by environmental change. Longer time spans (e.g. 1000,2000 years) increase the range of variation, by encompassing a larger sample of natural variability as well as non-stationary variability in the earth system. Most modern ecosystems disappear when the time span is expanded to 10000,15 000 years owing to secular changes in earth's climate system. Paleo-ecological records can pinpoint the time of origination of specific ecosystems, and paleo-environmental records can reveal the specific environmental changes that led to development of those ecosystems and the range of environmental variation under which those ecosystems have maintained themselves in the past. This information can help identify critical environmental thresholds beyond which specific modern ecosystems can no longer be sustained. [source]


Structural complexity and land-surface energy exchange along a gradient from arctic tundra to boreal forest

JOURNAL OF VEGETATION SCIENCE, Issue 3 2004
C. Thompson
Abstract: Question: Current climate changes in the Alaskan Arctic, which are characterized by increases in temperature and length of growing season, could alter vegetation structure, especially through increases in shrub cover or the movement of treeline. These changes in vegetation structure have consequences for the climate system. What is the relationship between structural complexity and partitioning of surface energy along a gradient from tundra through shrub tundra to closed canopy forest? Location: Arctic tundra-boreal forest transition in the Alaskan Arctic. Methods: Along this gradient of increasing canopy complexity, we measured key vegetation characteristics, including community composition, biomass, cover, height, leaf area index and stem area index. We relate these vegetation characteristics to albedo and the partitioning of net radiation into ground, latent, and sensible heating fluxes. Results: Canopy complexity increased along the sequence from tundra to forest due to the addition of new plant functional types. This led to non-linear changes in biomass, cover, and height in the understory. The increased canopy complexity resulted in reduced ground heat fluxes, relatively conserved latent heat fluxes and increased sensible heat fluxes. The localized warming associated with increased sensible heating over more complex canopies may amplify regional warming, causing further vegetation change in the Alaskan Arctic. [source]


Critical considerations for future action during the second commitment period: A small islands' perspective

NATURAL RESOURCES FORUM, Issue 2 2007
Leonard Nurse
Abstract If the objective of the United Nations Framework Convention on Climate Change (UNFCCC) is to be achieved, Parties must commit themselves to meeting meaningful long-term targets that, based on current knowledge, would minimize the possibility of irreversible climate change. Current indications are that a global mean temperature rise in excess of 2,3 °C would enhance the risk of destabilizing the climate system as we know it, and possibly lead to catastrophic change such as a shutdown of the deep ocean circulation, and the disintegration of the West Arctic Ice Sheet. Observations have shown that for many small island developing States (SIDS), life-sustaining ecosystems such as coral reefs, already living near the limit of thermal tolerance, are highly climate-sensitive, and can suffer severe damage from exposure to sea temperatures as low as 1 °C above the seasonal maximum. Other natural systems (e.g., mangroves) are similarly susceptible to relatively low temperature increases, coupled with small increments of sea level rise. Economic and social sectors, including agriculture and human health, face similar challenges from the likely impacts of projected climate change. In light of known thresholds, this paper presents the view that SIDS should seek support for a temperature cap not exceeding 1.5,2.0 °C above the pre-industrial mean. It is argued that a less stringent post-Kyoto target would frustrate achievement of the UNFCCC objective. The view is expressed that all countries which emit significant amounts of greenhouse gases should commit to binding reduction targets in the second commitment period, but that targets for developing countries should be less stringent than those agreed for developed countries. Such an arrangement would be faithful to the principles of equity and would ensure that the right of Parties to attain developed country status would not be abrogated. [source]


The flow of energy through the earth's climate system

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 603 2004
Kevin E. Trenberth
Abstract The primary driver of the climate system is the uneven distribution of incoming and outgoing radiation on earth. The incoming radiant energy is transformed into various forms (internal heat, potential energy, latent energy, and kinetic energy), moved around in various ways primarily by the atmosphere and oceans, stored and sequestered in the ocean, land, and ice components of the climate system, and ultimately radiated back to space as infrared radiation. The requirement for an equilibrium climate mandates a balance between the incoming and outgoing radiation, and further mandates that the flows of energy are systematic. These drive the weather systems in the atmosphere, currents in the ocean, and fundamentally determine the climate. Values are provided for the seasonal uptake and release of heat by the oceans that substantially moderate the climate in maritime regions. In the atmosphere, the poleward transports are brought about mainly by large-scale overturning, including the Hadley circulation in low latitudes, and baroclinic storms in the extratropics, but the seamless nature of the transports on about monthly time-scales indicates a fundamental link between the two rather different mechanisms. The flows of energy can be perturbed, causing climate change. This article provides an overview of the flows of energy, its transformations, transports, uptake, storage and release, and the processes involved. The focus is on the region 60°N to 60°S, and results are presented for the solstitial seasons and their differences to highlight the annual cycle. Challenges in better determining the surface heat balance and its changes with time are discussed. Copyright © 2004 Royal Meteorological Society [source]


A physical basis for a maximum of thermodynamic dissipation of the climate system

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 572 2001
Garth W. Paltridge
Abstract A mechanism is proposed by which the energy flow through a turbulent medium might be constrained to maximize its dissipation or (equivalently) its thermodynamic efficiency. The mechanism may provide a physical basis for the various findings over the years that the earth-atmosphere system has adopted a format which maximizes its overall rate of entropy production. The qualitative picture is of a system which, because of the asymmetry of its turbulent fluctuations about the locus of possible steady states determined by energy balance, moves to a preferred steady state and therefore to a preferred turbulent transfer coefficient. [source]


East Asian monsoon instability at the stage 5a/4 transition

BOREAS, Issue 2 2002
SHANGFA XIONG
The physics involved in the abrupt climate changes of the late Quaternary have eluded paleoclimatologists for many years. More paleoclimatic records characteristic of different elements of the global climate system are needed for better understanding of the cause-feedback relationships in the system. The East Asian monsoon is an important part of the global climate system and the mechanical links between the East Asian monsoon and other climatic elements around the world may hold a key to our knowledge of abrupt climate changes in East Asia and probably over a larger part of the globe. Previous studies have detected millennial-scale winter monsoon oscillations during the last glaciation and probably also during the last interglaciation in loess sequences across China. However, less attention has been paid to the abrupt summer monsoon changes and the stage 5a/4 transition, an important period for the evolution of the East Asian monsoon when the global climate shifted towards the last glaciation. Here we report on two loess sections from eastern China which were dated using a thermoluminescence (TL) technique. The pedogenic and other sediment parameters suggest that the summer monsoon experienced a two-step abrupt retreat at the stage 5a/4 transition. The variations in the proxies for the winter monsoon are synchronized with the summer monsoon proxies during this brief interval, implying a direct and immediate link between high latitude and low latitude mechanisms. These changes may be correlated with similar climatic oscillations observed in the North Atlantic, Europe and Antarctica, raising the possibility that the forcing factors that induced these changes are global in extent. [source]


A modified support vector machine based prediction model on streamflow at the Shihmen Reservoir, Taiwan

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 8 2010
Pei-Hao Li
Abstract The uncertainty of the availability of water resources during the boreal winter has led to significant economic losses in recent years in Taiwan. A modified support vector machine (SVM) based prediction framework is thus proposed to improve the predictability of the inflow to Shihmen reservoir in December and January, using climate data from the prior period. Highly correlated climate precursors are first identified and adopted to predict water availability in North Taiwan. A genetic algorithm based parameter determination procedure is implemented to the SVM parameters to learn the non-linear pattern underlying climate systems more flexibly. Bagging is then applied to construct various SVM models to reduce the variance in the prediction by the median of forecasts from the constructed models. The enhanced prediction ability of the proposed modified SVM-based model with respect to a bagged multiple linear regression (MLR), simple SVM, and simple MLR model is also demonstrated. The results show that the proposed modified SVM-based model outperforms the prediction ability of the other models in all of the adopted evaluation scores. Copyright © 2009 Royal Meteorological Society [source]