Home About us Contact | |||
Climate Scenarios (climate + scenario)
Kinds of Climate Scenarios Selected AbstractsRegeneration patterns and persistence of the fog-dependent Fray Jorge forest in semiarid Chile during the past two centuriesGLOBAL CHANGE BIOLOGY, Issue 1 2008ALVARO G. GUTIÉRREZ Abstract The persistence of rainforest patches at Fray Jorge National Park (FJNP) in semiarid Chile (30°40,S), a region receiving approximately 147 mm of annual rainfall, has been a source of concern among forest managers. These forests are likely dependent on water inputs from oceanic fog and their persistence seems uncertain in the face of climate change. Here, we assessed tree radial growth and establishment during the last two centuries and their relation to trends in climate and canopy disturbance. Such evaluation is critical to understanding the dynamics of these semiarid ecosystems in response to climate change. We analyzed forest structure of six forest patches (0.2,22 ha) in FJNP based on sampling within 0.1 ha permanent plots. For the main canopy species, the endemic Aextoxicon punctatum (Aextoxicaceae), we used tree-ring analysis to assess establishment periods, tree ages, growing trends and their relation to El Niño Southern Oscillation (ENSO), rainfall, and disturbance. The population dynamics of A. punctatum can be described by a continuous regeneration mode. Regeneration of A. punctatum was sensitive to different canopy structures. Growth release patterns suggest the absence of large scale human impact. Radial growth and establishment of A. punctatum were weakly correlated with rainfall and ENSO. If water limits forests patch persistence, patches are likely dependent on the combination of fog and rain water inputs. Forest patches have regenerated continuously for at least 250 years, despite large fluctuations in rainfall driven by ENSO and a regional decline in rainfall during the last century. Because of the positive influence on fog interception, forest structure should be preserved under any future climate scenario. Future research in FJNP should prioritize quantifying the long-term trends of fog water deposition on forests patches. Fog modeling is crucial for understanding the interplay among physical drivers of water inputs under climate change. [source] Downy mildew (Plasmopara viticola) epidemics on grapevine under climate changeGLOBAL CHANGE BIOLOGY, Issue 7 2006SALINARI FRANCESCA Abstract As climate is a key agro-ecosystem driving force, climate change could have a severe impact on agriculture. Many assessments have been carried out to date on the possible effects of climate change (temperature, precipitation and carbon dioxide concentration changes) on plant physiology. At present however, likely effects on plant pathogens have not been investigated deeply. The aim of this work was to simulate future scenarios of downy mildew (Plasmopara viticola) epidemics on grape under climate change, by combining a disease model to output from two general circulation models (GCMs). Model runs corresponding to the SRES-A2 emissions scenario, characterized by high projections of both population and greenhouse gas emissions from present to 2100, were chosen in order to investigate impacts of worst-case scenarios, among those currently available from IPCC. Three future decades were simulated (2030, 2050, 2080), using as baseline historical series of meteorological data collected from 1955 to 2001 in Acqui Terme, an important grape-growing area in the north-west of Italy. Both GCMs predicted increase of temperature and decrease of precipitation in this region. The simulations obtained by combining the disease model to the two GCM outputs predicted an increase of the disease pressure in each decade: more severe epidemics were a direct consequence of more favourable temperature conditions during the months of May and June. These negative effects of increasing temperatures more than counterbalanced the effects of precipitation reductions, which alone would have diminished disease pressure. Results suggested that, as adaptation response to future climate change, more attention would have to be paid in the management of early downy mildew infections; two more fungicide sprays were necessary under the most negative climate scenario, compared with present management regimes. At the same time, increased knowledge on the effects of climate change on host,pathogen interactions will be necessary to improve current predictions. [source] Climate- and crop-responsive emission factors significantly alter estimates of current and future nitrous oxide emissions from fertilizer useGLOBAL CHANGE BIOLOGY, Issue 9 2005Helen C. Flynn Abstract The current Intergovernmental Panel on Climate Change (IPCC) default methodology (tier 1) for calculating nitrous oxide (N2O) emissions from nitrogen applied to agricultural soils takes no account of either crop type or climatic conditions. As a result, the methodology omits factors that are crucial in determining current emissions, and has no mechanism to assess the potential impact of future climate and land-use change. Scotland is used as a case study to illustrate the development of a new methodology, which retains the simple structure of the IPCC tier 1 methodology, but incorporates crop- and climate-dependent emission factors (EFs). It also includes a factor to account for the effect of soil compaction because of trampling by grazing animals. These factors are based on recent field studies in Scotland and elsewhere in the UK. Under current conditions, the new methodology produces significantly higher estimates of annual N2O emissions than the IPCC default methodology, almost entirely because of the increased contribution of grazed pasture. Total emissions from applied fertilizer and N deposited by grazing animals are estimated at 10 662 t N2O-N yr,1 using the newly derived EFs, as opposed to 6 796 t N2O-N yr,1 using the IPCC default EFs. On a spatial basis, emission levels are closer to those calculated using field observations and detailed soil modelling than to estimates made using the IPCC default methodology. This can be illustrated by parts of the western Ayrshire basin, which have previously been calculated to emit 8,9 kg N2O-N ha,1 yr,1 and are estimated here as 6.25,8.75 kg N2O-N ha,1 yr,1, while the IPCC default methodology gives a maximum emission level of only 3.75 kg N2O-N ha,1 yr,1 for the whole area. The new methodology is also applied in conjunction with scenarios for future climate- and land-use patterns, to assess how these emissions may change in the future. The results suggest that by 2080, Scottish N2O emissions may increase by up to 14%, depending on the climate scenario, if fertilizer and land management practices remain unchanged. Reductions in agricultural land use, however, have the potential to mitigate these increases and, depending on the replacement land use, may even reduce emissions to below current levels. [source] Stemwood volume increment changes in European forests due to climate change,a simulation study with the EFISCEN modelGLOBAL CHANGE BIOLOGY, Issue 4 2002Gert-Jan Nabuurs Abstract This paper presents the results of a modelling study of future net annual increment changes in stemwood of European forests owing to climate change. Seven process-based growth models were applied to 14 representative forest sites across Europe under one climate change scenario. The chosen scenario was the HadCM2 run, based on emission scenario IS92a, and resulted in an increase in mean temperature of 2.5 °C between 1990 and 2050, and an increase in annual precipitation of 5,15%. The information from those runs was incorporated in a transient way in a large-scale forest resource scenario model, EFISCEN (European forest information scenario). European scale forest resource projections were made for 28 countries covering 131.7 million ha of forest under two management scenarios for the period until 2050. The results showed that net annual increments in stemwood of European forests under climate change will further increase with an additional 0.9 m3 ha,1 y,1 in 2030 compared to the ongoing increase under a current climate scenario, i.e. an extra 18% increase. After 2030 the extra increment increase is reduced to 0.79 m3 ha,1 y,1 in 2050. Under climate change, absolute net annual increments will increase from the present 4.95, on average for Europe, to 5.93 m3 ha,1 y,1 in 2025. After 2025, increments in all scenarios start to decline owing to ageing of the forest and the high growing stocks being reached. The results of the present study are surrounded by large uncertainties. These uncertainties are caused by unknown emissions in the future, unknown extent of climate change, uncertainty in process-based models, uncertainty in inventory data, and uncertainty in inventory projection. Although the results are thus not conclusive, climate change may lead to extra felling opportunities in European forests of 87 million m3y,1. Because Europe's forests are intensively managed already, management may adapt to climate change relatively easily. However, this study also indicates that climate change may lead to a faster build-up of growing stocks. That may create a less stable forest resource in terms of risks to storm damage. [source] Impact of global warming on ENSO variability using the coupled giss GCM/ZC modelINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 10 2006Dr. Timothy Eichler Research Scientist Abstract This study uses a hybrid coupled model (referred to as the general-circulation model (GCM)/Zebiak/Cane (ZC) model), which consists of the Goddard Institute for Space Studies' (GISS) Atmospheric general-circulation model (AGCM) coupled to the oceanic component of the ZC intermediate model to assess the impact of global warming on El Niño behavior, with and without the influence of heat introduced from the subtropical Pacific (via subtropical cell (STC) pathway). The baseline GCM/ZC model produces El Niño variability with a two year periodicity and an amplitude of approximately half the magnitude of observed El Niño. The GCM/ZC model also produces an appropriate atmospheric global response to El Niño/southern oscillation (ENSO) as shown by composites of 500 hPa heights, sea-level pressure (SLP), 200 hPa wind, and precipitation during El Niño and La Niña periods. To evaluate the importance of global warming on ENSO variability, 2× CO2 and 4× CO2 transient simulations were done increasing the atmospheric CO2 one percent per year, then extending the runs for an additional 70 years to obtain equilibrium climates for each run. An additional set of global-warming simulations was run after including a STC parameterization generated by computing 5-year running means of the sea-surface temperature (SST) difference between a transient run and the 1× CO2 GCM/ZC run at the anticipated subduction zones (160,130°W, 20,40°N and 20,44°S, 160,130°W) and adding it to the base of the equatorial mixed-layer of the ZC model with a time lag of 15 years. This effectively alters the vertical temperature gradient of the ZC model, which affects SST via upwelling. Two features of the GCM/ZC response to global warming are emphasized. Firstly, the inclusion of the STC results in a major redistribution of heat across the equatorial Pacific, leading to an El Niño-like response in the final equilibrium solution with less variability about the mean. The global warming aspect due to the El Niño-like response results in a positive feedback on global warming, which causes a higher global surface-air temperature (SAT) than identical transient simulations without inclusion of the STC. Secondly, including the STC effect produces a far greater magnitude of global ENSO-like impact because of the reduction of, or even the reversal of, the equatorial Pacific longitudinal SST gradient. The implications of such an extreme climate scenario are discussed. Copyright © 2006 Royal Meteorological Society [source] Simulating forest ecosystem response to climate warming incorporating spatial effects in north-eastern ChinaJOURNAL OF BIOGEOGRAPHY, Issue 12 2005Hong S. He Abstract Aim, Predictions of ecosystem responses to climate warming are often made using gap models, which are among the most effective tools for assessing the effects of climate change on forest composition and structure. Gap models do not generally account for broad-scale effects such as the spatial configuration of the simulated forest ecosystems, disturbance, and seed dispersal, which extend beyond the simulation plots and are important under changing climates. In this study we incorporate the broad-scale spatial effects (spatial configurations of the simulated forest ecosystems, seed dispersal and fire disturbance) in simulating forest responses to climate warming. We chose the Changbai Natural Reserve in China as our study area. Our aim is to reveal the spatial effects in simulating forest responses to climate warming and make new predictions by incorporating these effects in the Changbai Natural Reserve. Location, Changbai Natural Reserve, north-eastern China. Method, We used a coupled modelling approach that links a gap model with a spatially explicit landscape model. In our approach, the responses (establishment) of individual species to climate warming are simulated using a gap model (linkages) that has been utilized previously for making predictions in this region; and the spatial effects are simulated using a landscape model (LANDIS) that incorporates spatial configurations of the simulated forest ecosystems, seed dispersal and fire disturbance. We used the recent predictions of the Canadian Global Coupled Model (CGCM2) for the Changbai Mountain area (4.6 °C average annual temperature increase and little precipitation change). For the area encompassed by the simulation, we examined four major ecosystems distributed continuously from low to high elevations along the northern slope: hardwood forest, mixed Korean pine hardwood forest, spruce-fir forest, and sub-alpine forest. Results, The dominant effects of climate warming were evident on forest ecosystems in the low and high elevation areas, but not in the mid-elevation areas. This suggests that the forest ecosystems near the southern and northern ranges of their distributions will have the strongest response to climate warming. In the mid-elevation areas, environmental controls exerted the dominant influence on the dynamics of these forests (e.g. spruce-fir) and their resilience to climate warming was suggested by the fact that the fluctuations of species trajectories for these forests under the warming scenario paralleled those under the current climate scenario. Main conclusions, With the spatial effects incorporated, the disappearance of tree species in this region due to the climate warming would not be expected within the 300-year period covered by the simulation. Neither Korean pine nor spruce-fir was completely replaced by broadleaf species during the simulation period. Even for the sub-alpine forest, mountain birch did not become extinct under the climate warming scenario, although its occurrence was greatly reduced. However, the decreasing trends characterizing Korean pine, spruce, and fir indicate that in simulations beyond 300 years these species could eventually be replaced by broadleaf tree species. A complete forest transition would take much longer than the time periods predicted by the gap models. [source] Long-term effects of climate change on vegetation and carbon dynamics in peat bogsJOURNAL OF VEGETATION SCIENCE, Issue 3 2008Monique M.P.D. Heijmans Abstract Questions: What are the long-term effects of climate change on the plant species composition and carbon sequestration in peat bogs? Methods: We developed a bog ecosystem model that includes vegetation, carbon, nitrogen and water dynamics. Two groups of vascular plant species and three groups of Sphagnum species compete with each other for light and nitrogen. The model was tested by comparing the outcome with long-term historic vegetation changes in peat cores from Denmark and England. A climate scenario was used to analyse the future effects of atmospheric CO2, temperature and precipitation. Results: The main changes in the species composition since 1766 were simulated by the model. Simulations for a future warmer, and slightly wetter, climate with doubling CO2 concentration suggest that little will change in species composition, due to the contrasting effects of increasing temperatures (favouring vascular plants) and CO2 (favouring Sphagnum). Further analysis of the effects of temperature showed that simulated carbon sequestration is negatively related to vascular plant expansion. Model results show that increasing temperatures may still increase carbon accumulation at cool, low N deposition sites, but decrease carbon accumulation at high N deposition sites. Conclusions: Our results show that the effects of temperature, precipitation, N-deposition and atmospheric CO2 are not straightforward, but interactions between these components of global change exist. These interactions are the result of changes in vegetation composition. When analysing long-term effects of global change, vegetation changes should be taken into account and predictions should not be based on temperature increase alone. [source] The Interplay between Climate Variability and Density Dependence in the Population Viability of Chinook SalmonCONSERVATION BIOLOGY, Issue 1 2006RICHARD W. ZABEL análisis de viabilidad poblacional; especies en peligro; Oncorhynchus tshawytscha Abstract:,The viability of populations is influenced by driving forces such as density dependence and climate variability, but most population viability analyses (PVAs) ignore these factors because of data limitations. Additionally, simplified PVAs produce limited measures of population viability such as annual population growth rate (,) or extinction risk. Here we developed a "mechanistic" PVA of threatened Chinook salmon (Oncorhynchus tshawytscha) in which, based on 40 years of detailed data, we related freshwater recruitment of juveniles to density of spawners, and third-year survival in the ocean to monthly indices of broad-scale ocean and climate conditions. Including climate variability in the model produced important effects: estimated population viability was very sensitive to assumptions of future climate conditions and the autocorrelation contained in the climate signal increased mean population abundance while increasing probability of quasi extinction. Because of the presence of density dependence in the model, however, we could not distinguish among alternative climate scenarios through mean , values, emphasizing the importance of considering multiple measures to elucidate population viability. Our sensitivity analyses demonstrated that the importance of particular parameters varied across models and depended on which viability measure was the response variable. The density-dependent parameter associated with freshwater recruitment was consistently the most important, regardless of viability measure, suggesting that increasing juvenile carrying capacity is important for recovery. Resumen:,La viabilidad de poblaciones esta influida por fuerzas conductoras como la denso dependencia y la variabilidad climática, pero la mayoría de los análisis de viabilidad poblacional (AVP) ignoran estos factores debido a limitaciones en la disponibilidad de datos. Adicionalmente, los AVP simplificados producen medidas limitadas de la viabilidad poblacional tales como la tasa anual de crecimiento poblacional (,) o el riesgo de extinción. Aquí desarrollamos un AVP "mecanicista" de Oncorhynchus tshawytscha en el que, con base en datos detallados de 40 años, relacionamos el reclutamiento de juveniles en agua dulce con la densidad de reproductores, y la supervivencia en el océano al tercer año con índices mensuales de condiciones oceánicas y climáticas a amplia escala. La inclusión de la variabilidad climática en el modelo produjo efectos importantes: la viabilidad poblacional estimada fue muy sensible a las suposiciones de condiciones climáticas futuras y la autocorrelación contenida en la señal climática aumentó la abundancia poblacional promedio al mismo tiempo que incrementó la probabilidad de cuasi extinción. Sin embargo, debido a la presencia de denso densidad en el modelo no pudimos distinguir entre escenarios climáticos alternativos a través de los valores promedio de ,, lo que enfatiza la importancia de considerar medidas múltiples para dilucidar la viabilidad poblacional. Nuestros análisis de sensibilidad demostraron que la importancia de parámetros particulares varió en los modelos y dependió de la medida de viabilidad utilizada como variable de respuesta. El parámetro de denso dependencia asociada con el reclutamiento en agua dulce consistentemente fue el más importante, independientemente de la medida de viabilidad, lo que sugiere que el incremento en la capacidad de carga de juveniles es importante para la recuperación. [source] Climate-driven decrease in erosion in extant Mediterranean badlandsEARTH SURFACE PROCESSES AND LANDFORMS, Issue 11 2010Michèle L. Clarke Abstract Badland areas provide some of the highest erosion rates globally. Most studies of erosion have insufficient lengths of record to interrogate the impacts of decadal-scale changes in precipitation on rates of badland erosion in regions such as the Mediterranean, which are known to be sensitive to land degradation and desertification. Erosion measurements, derived from field monitoring using erosion pins, in southern Italy during the period 1974,2004 are used to explore the impacts of changing precipitation patterns on badland erosion. Erosion on badland inter-rill areas is strongly correlated with cumulative rainfall over each monitoring period. Annual precipitation has a substantial dynamic range, but both annual and winter (December, January, February) rainfall amounts in southern Italy show a steady decrease over the period 1970,2000. The persistence of positive values of the winter North Atlantic Oscillation index in the period 1980,2000 is correlated with a reduction in the winter rainfall amounts. Future climate scenarios show a reduction in annual rainfall across the western and central Mediterranean which is likely to result in a further reduction in erosion rates in existing badlands. Copyright © 2010 John Wiley & Sons, Ltd. [source] NeuralEnsembles: a neural network based ensemble forecasting program for habitat and bioclimatic suitability analysisECOGRAPHY, Issue 1 2009Jesse R. O'Hanley NeuralEnsembles is an integrated modeling and assessment tool for predicting areas of species habitat/bioclimatic suitability based on presence/absence data. This free, Windows based program, which comes with a friendly graphical user interface, generates predictions using ensembles of artificial neural networks. Models can quickly and easily be produced for multiple species and subsequently be extrapolated either to new regions or under different future climate scenarios. An array of options is provided for optimizing the construction and training of ensemble models. Main outputs of the program include text files of suitability predictions, maps and various statistical measures of model performance and accuracy. [source] Modelling species distributions without using species distributions: the cane toad in Australia under current and future climatesECOGRAPHY, Issue 4 2008Michael Kearney Accurate predictions of the potential distribution of range-shifting species are required for effective management of invasive species, and for assessments of the impact of climate change on native species. Range-shifting species pose a challenge for traditional correlative approaches to range prediction, often requiring the extrapolation of complex statistical associations into novel environmental space. Here we take an alternative approach that does not use species occurrence data, but instead captures the fundamental niche of a species by mechanistically linking key organismal traits with spatial data using biophysical models. We demonstrate this approach with a major invasive species, the cane toad Bufo marinus in Australia, assessing the direct climatic constraints on its ability to move, survive, and reproduce. We show that the current range can be explained by thermal constraints on the locomotor potential of the adult stage together with limitations on the availability of water for the larval stage. Our analysis provides a framework for biologically grounded predictions of the potential for cane toads to expand their range under current and future climate scenarios. More generally, by quantifying spatial variation in physiological constraints on an organism, trait-based approaches can be used to investigate the range-limits of any species. Assessments of spatial variation in the physiological constraints on an organism may also provide a mechanistic basis for forecasting the rate of range expansion and for understanding a species' potential to evolve at range-edges. Mechanistic approaches thus have broad application to process-based ecological and evolutionary models of range-shift. [source] The rise of research on futures in ecology: rebalancing scenarios and predictionsECOLOGY LETTERS, Issue 12 2009Audrey Coreau Abstract Concern about the ecological consequences of global change has increasingly stimulated ecologists to examine the futures of ecological systems. Studying futures is not only a crucial element of the interaction between science, management and decision making, but also a critical research challenge per se, especially because futures cannot be observed or experimented on. In addition, researchers can encounter methodological and theoretical difficulties, which make interpretations and predictions problematic. In the literature which deals with futures of ecological systems two main lines of research can be distinguished: a predictive approach, which dominates the literature, can be contrasted with a rarer number of studies that elaborate potential scenarios for ecological systems. Scenario approaches currently concern mainly contacts with stakeholders or decision makers, or the use of climate scenarios to derive projections about ecological futures. We argue that a new direction for ecological futures research could be explored by using ecological scenarios in combination with predictive models to further fundamental ecological research, in addition to enhancing its applied value. Ecology Letters (2009) 12: 1277,1286 [source] Why is the choice of future climate scenarios for species distribution modelling important?ECOLOGY LETTERS, Issue 11 2008Linda J. Beaumont Abstract Species distribution models (SDMs) are common tools for assessing the potential impact of climate change on species ranges. Uncertainty in SDM output occurs due to differences among alternate models, species characteristics and scenarios of future climate. While considerable effort is being devoted to identifying and quantifying the first two sources of variation, a greater understanding of climate scenarios and how they affect SDM output is also needed. Climate models are complex tools: variability occurs among alternate simulations, and no single ,best' model exists. The selection of climate scenarios for impacts assessments should not be undertaken arbitrarily - strengths and weakness of different climate models should be considered. In this paper, we provide bioclimatic modellers with an overview of emissions scenarios and climate models, discuss uncertainty surrounding projections of future climate and suggest steps that can be taken to reduce and communicate climate scenario-related uncertainty in assessments of future species responses to climate change. [source] Modeling the effects of fire and climate change on carbon and nitrogen storage in lodgepole pine (Pinus contorta) standsGLOBAL CHANGE BIOLOGY, Issue 3 2009E. A. H. SMITHWICK Abstract The interaction between disturbance and climate change and resultant effects on ecosystem carbon (C) and nitrogen (N) fluxes are poorly understood. Here, we model (using CENTURY version 4.5) how climate change may affect C and N fluxes among mature and regenerating lodgepole pine (Pinus contorta var. latifolia Engelm. ex S. Wats.) stands that vary in postfire tree density following stand-replacing fire. Both young (postfire) and mature stands had elevated forest production and net N mineralization under future climate scenarios relative to current climate. Forest production increased 25% [Hadley (HAD)] to 36% [Canadian Climate Center (CCC)], compared with 2% under current climate, among stands that varied in stand age and postfire density. Net N mineralization increased under both climate scenarios, e.g., +19% to 37% (HAD) and +11% to 23% (CCC), with greatest increases for young stands with sparse tree regeneration. By 2100, total ecosystem carbon (live+dead+soils) in mature stands was higher than prefire levels, e.g., +16% to 19% (HAD) and +24% to 28% (CCC). For stands regenerating following fire in 1988, total C storage was 0,9% higher under the CCC climate model, but 5,6% lower under the HAD model and 20,37% lower under the Control. These patterns, which reflect variation in stand age, postfire tree density, and climate model, suggest that although there were strong positive responses of lodgepole pine productivity to future changes in climate, C flux over the next century will reflect complex relationships between climate, age structure, and disturbance-recovery patterns of the landscape. [source] Projected changes in the organic carbon stocks of cropland mineral soils of European Russia and the Ukraine, 1990,2070GLOBAL CHANGE BIOLOGY, Issue 2 2007JO SMITH Abstract In this paper, we use the Rothamsted Carbon Model to estimate how cropland mineral soil carbon stocks are likely to change under future climate, and how agricultural management might influence these stocks in the future. The model was run for croplands occurring on mineral soils in European Russia and the Ukraine, representing 74 Mha of cropland in Russia and 31 Mha in the Ukraine. The model used climate data (1990,2070) from the HadCM3 climate model, forced by four Intergovernmental Panel on Climate Change (IPCC) emission scenarios representing various degrees of globalization and emphasis on economic vs. environmental considerations. Three land use scenarios were examined, business as usual (BAU) management, optimal management (OPT) to maximize profit, and soil sustainability (SUS) in which profit was maximized within the constraint that soil carbon must either remain stable or increase. Our findings suggest that soil organic carbon (SOC) will be lost under all climate scenarios, but less is lost under the climate scenarios where environmental considerations are placed higher than purely economic considerations (IPCC B1 and B2 scenarios) compared with the climate associated with emissions resulting from the global free market scenario (IPCC A1FI scenario). More SOC is lost towards the end of the study period. Optimal management is able to reduce this loss of SOC, by up to 44% compared with business as usual management. The soil sustainability scenario could be run only for a limited area, but in that area was shown to increase SOC stocks under three climate scenarios, compared with a loss of SOC under business as usual management in the same area. Improved agricultural soil management will have a significant role to play in the adaptation to, and mitigation of, climate change in this region. Further, our results suggest that this adaptation could be realized without damaging profitability for the farmers, a key criteria affecting whether optimal management can be achieved in reality. [source] Advanced snowmelt causes shift towards positive neighbour interactions in a subarctic tundra communityGLOBAL CHANGE BIOLOGY, Issue 8 2006SONJA WIPF Abstract Positive and negative species interactions are important factors in structuring vegetation communities. Studies in many ecosystems have focussed on competition; however, facilitation has often been found to outweigh competition under harsh environmental conditions. The balance between positive and negative species interactions is known to shift along spatial, temporal and environmental gradients and thus is likely to be affected by climate change. Winter temperature and precipitation patterns in Interior Alaska are rapidly changing and could lead to warmer winters with a shallow, early melting snow cover in the near future. We conducted snow manipulation and neighbour removal experiments to test whether the relative importance of positive and negative species interactions differs between three winter climate scenarios in a subarctic tundra community. In plots with ambient, manually advanced or delayed snowmelt, we assessed the relative importance of neighbours for survival, phenology, growth and reproduction of two dwarf shrub species. Under ambient conditions and after delayed snowmelt, positive and negative neighbour effects were generally balanced, but when snowmelt was advanced we found overall facilitative neighbour effects on survival, phenology, growth and reproduction of Empetrum nigrum, the earlier developing of the two target species. As earlier snowmelt was correlated with colder spring temperatures and a higher number of frosts, we conclude that plants experienced harsher environmental conditions after early snowmelt and that neighbours could have played an important role in ameliorating the physical environment at the beginning of the growing season. [source] Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystemGLOBAL CHANGE BIOLOGY, Issue 5 2002Florent Mouillot Abstract The impacts of climate change on Mediterranean-type ecosystems may result from complex interactions between direct effects on water stress and subsequent modifications in flammability and fire regime leading to changes in standing biomass and plant species composition. We analysed these interrelations through a simulation approach combining scenarios of climate change developed from GCM results and a multispecies functional model for vegetation dynamics, SIERRA. A fire risk procedure based on weekly estimates of vegetation water stress has been implemented. Using climate data from 1960 to 1997, simulations of a typical maquis woodland community have been performed as baseline and compared with two climate scenarios: a change in the rainfall regime alone, and changes in both rainfall and air temperature. Climate changes are defined by an increase in temperature, particularly in summer, and a change in the rainfall pattern leading to a decrease in low rainfall events, and an increase in intense rainfall events. The results illustrate the lack of drastic changes in the succession process, but highlight modifications in the water budget and in the length of the drought periods. Water stress lower than expected regarding statistics on the current climate is simulated, emphasizing a long-term new equilibrium of vegetation to summer drought but with a higher sensibility to rare events. Regarding fire frequency, climate changes tend to decrease the time interval between two successive fires from 20 to 16 years for the maquis shrubland and from 72 to 62 years in the forested stages. This increase in fire frequency leads to shrub-dominated landscapes, which accentuates the yield of water by additional deep drainage and runoff. [source] Future hydroclimatology of the Mekong River basin simulated using the high-resolution Japan Meteorological Agency (JMA) AGCMHYDROLOGICAL PROCESSES, Issue 9 2008Anthony S. Kiem Abstract Analysis of future Japan Meteorological Agency atmospheric general circulation model (JMA AGCM) based climate scenarios for the Mekong River basin (MRB) indicates that annual mean precipitation will increase in the 21st century (2080,2099) by 4·2% averaged across the basin, with the majority of this increase occurring over the northern MRB (i.e. China). Annual mean temperatures are also projected to increase by approximately 2·6 °C (averaged across the MRB). As expected, these changes also lead to significant changes in the hydrology of the MRB. All MRB subbasins will experience an increase in the number of wet days in the ,future' and, importantly for sustainable water resources management and the mitigation of extreme events (e.g. floods and droughts), the magnitude and frequency of what are now considered extreme events are also expected to increase resulting in increased risk of flooding, but a reduction in the likelihood of droughts/low-flow periods,assuming water extraction is kept at a sustainable level. Despite the fact that the climate change impact projections are associated with significant uncertainty, it is important to act now and put in place policies, infrastructure and mitigation strategies to protect against the increased flooding that could occur. In addition, despite this study indicating a decrease in the number of ,low-flow' days, across most of the MRB, further analysis is needed to determine whether the reduction in low-flow days is enough to compensate for (and sustain) the rapidly increasing population and development in the MRB. Copyright © 2008 John Wiley & Sons, Ltd. [source] Validation of hydrological models for climate scenario simulation: the case of Saguenay watershed in QuebecHYDROLOGICAL PROCESSES, Issue 23 2007Yonas B. Dibike Abstract This paper presents the results of an investigation into the problems associated with using downscaled meteorological data for hydrological simulations of climate scenarios. The influence of both the hydrological models and the meteorological inputs driving these models on climate scenario simulation studies are investigated. A regression-based statistical tool (SDSM) is used to downscale the daily precipitation and temperature data based on climate predictors derived from the Canadian global climate model (CGCM1), and two types of hydrological model, namely the physically based watershed model WatFlood and the lumped-conceptual modelling system HBV-96, are used to simulate the flow regimes in the major rivers of the Saguenay watershed in Quebec. The models are validated with meteorological inputs from both the historical records and the statistically downscaled outputs. Although the two hydrological models demonstrated satisfactory performances in simulating stream flows in most of the rivers when provided with historic precipitation and temperature records, both performed less well and responded differently when provided with downscaled precipitation and temperature data. By demonstrating the problems in accurately simulating river flows based on downscaled data for the current climate, we discuss the difficulties associated with downscaling and hydrological models used in estimating the possible hydrological impact of climate change scenarios. Copyright © 2007 John Wiley & Sons, Ltd. [source] Assessment of climate-change impacts on alpine discharge regimes with climate model uncertaintyHYDROLOGICAL PROCESSES, Issue 10 2006Pascal Horton Abstract This study analyses the uncertainty induced by the use of different state-of-the-art climate models on the prediction of climate-change impacts on the runoff regimes of 11 mountainous catchments in the Swiss Alps having current proportions of glacier cover between 0 and 50%. The climate-change scenarios analysed are the result of 19 regional climate model (RCM) runs obtained for the period 2070,2099 based on two different greenhouse-gas emission scenarios (the A2 and B2 scenarios defined by the Intergovernmental Panel on Climate Change) and on three different coupled atmosphere-ocean general circulation models (AOGCMs), namely HadCM3, ECHAM4/OPYC3 and ARPEGE/OPA. The hydrological response of the study catchments to the climate scenarios is simulated through a conceptual reservoir-based precipitation-runoff transformation model called GSM-SOCONT. For the glacierized catchments, the glacier surface corresponding to these future scenarios is updated through a conceptual glacier surface evolution model. The results obtained show that all climate-change scenarios induce, in all catchments, an earlier start of the snowmelt period, leading to a shift of the hydrological regimes and of the maximum monthly discharges. The mean annual runoff decreases significantly in most cases. For the glacierized catchments, the simulated regime modifications are mainly due to an increase of the mean temperature and the corresponding impacts on the snow accumulation and melting processes. The hydrological regime of the catchments located at lower altitudes is more strongly affected by the changes of the seasonal precipitation. For a given emission scenario, the simulated regime modifications of all catchments are highly variable for the different RCM runs. This variability is induced by the driving AOGCM, but also in large part by the inter-RCM variability. The differences between the different RCM runs are so important that the predicted climate-change impacts for the two emission scenarios A2 and B2 are overlapping. Copyright © 2006 John Wiley & Sons, Ltd. [source] Global potential distribution of an invasive species, the yellow crazy ant (Anoplolepis gracilipes) under climate changeINTEGRATIVE ZOOLOGY (ELECTRONIC), Issue 3 2008Youhua CHEN Abstract Changes to the Earth's climate may affect the distribution of countless species. Understanding the potential distribution of known invasive species under an altered climate is vital to predicting impacts and developing management policy. The present study employs ecological niche modeling to construct the global potential distribution range of the yellow crazy ant (Anoplolepis gracilipes) using past, current and future climate scenarios. Three modeling algorithms, GARP, BioClim and Environmental Distance, were used in a comparative analysis. Output from the models suggest firstly that this insect originated from south Asia, expanded into Europe and then into Afrotropical regions, after which it formed its current distribution. Second, the invasive risk of A. gracilipes under future climatic change scenarios will become greater because of an extension of suitable environmental conditions in higher latitudes. Third, when compared to the GARP model, BioClim and Environmental Distance models were better at modeling a species' ancestral distribution. These findings are discussed in light of the predictive accuracy of these models. [source] A review of climate risk information for adaptation and development planningINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 9 2009R. L. Wilby Abstract Although the use of climate scenarios for impact assessment has grown steadily since the 1990s, uptake of such information for adaptation is lagging by nearly a decade in terms of scientific output. Nonetheless, integration of climate risk information in development planning is now a priority for donor agencies because of the need to prepare for climate change impacts across different sectors and countries. This urgency stems from concerns that progress made against Millennium Development Goals (MDGs) could be threatened by anthropogenic climate change beyond 2015. Up to this time the human signal, though detectable and growing, will be a relatively small component of climate variability and change. This implies the need for a twin-track approach: on the one hand, vulnerability assessments of social and economic strategies for coping with present climate extremes and variability, and, on the other hand, development of climate forecast tools and scenarios to evaluate sector-specific, incremental changes in risk over the next few decades. This review starts by describing the climate outlook for the next couple of decades and the implications for adaptation assessments. We then review ways in which climate risk information is already being used in adaptation assessments and evaluate the strengths and weaknesses of three groups of techniques. Next we identify knowledge gaps and opportunities for improving the production and uptake of climate risk information for the 2020s. We assert that climate change scenarios can meet some, but not all, of the needs of adaptation planning. Even then, the choice of scenario technique must be matched to the intended application, taking into account local constraints of time, resources, human capacity and supporting infrastructure. We also show that much greater attention should be given to improving and critiquing models used for climate impact assessment, as standard practice. Finally, we highlight the over-arching need for the scientific community to provide more information and guidance on adapting to the risks of climate variability and change over nearer time horizons (i.e. the 2020s). Although the focus of the review is on information provision and uptake in developing regions, it is clear that many developed countries are facing the same challenges. Copyright © 2009 Royal Meteorological Society [source] Assessing the impact of deforestation and climate change on the range size and environmental niche of bird species in the Atlantic forests, BrazilJOURNAL OF BIOGEOGRAPHY, Issue 7 2010Bette A. Loiselle Abstract Aim, Habitat loss and climate change are two major drivers of biological diversity. Here we quantify how deforestation has already changed, and how future climate scenarios may change, environmental conditions within the highly disturbed Atlantic forests of Brazil. We also examine how environmental conditions have been altered within the range of selected bird species. Location, Atlantic forests of south-eastern Brazil. Methods, The historical distribution of 21 bird species was estimated using Maxent. After superimposing the present-day forest cover, we examined the environmental niches hypothesized to be occupied by these birds pre- and post-deforestation using environmental niche factor analysis (ENFA). ENFA was also used to compare conditions in the entire Atlantic forest ecosystem pre- and post-deforestation. The relative influence of land use and climate change on environmental conditions was examined using analysis of similarity and principal components analysis. Results, Deforestation in the region has resulted in a decrease in suitable habitat of between 78% and 93% for the Atlantic forest birds included here. Further, Atlantic forest birds today experience generally wetter and less seasonal forest environments than they did historically. Models of future environmental conditions within forest remnants suggest generally warmer conditions and lower annual variation in rainfall due to greater precipitation in the driest quarter of the year. We found that deforestation resulted in a greater divergence of environmental conditions within Atlantic forests than that predicted by climate change. Main conclusions, The changes in environmental conditions that have occurred with large-scale deforestation suggest that selective regimes may have shifted and, as a consequence, spatial patterns of intra-specific variation in morphology, behaviour and genes have probably been altered. Although the observed shifts in available environmental conditions resulting from deforestation are greater than those predicted by climate change, the latter will result in novel environments that exceed temperatures in any present-day climates and may lead to biotic attrition unless organisms can adapt to these warmer conditions. Conserving intra-specific diversity over the long term will require considering both how changes in the recent past have influenced contemporary populations and the impact of future environmental change. [source] New approaches to understanding late Quaternary climate fluctuations and refugial dynamics in Australian wet tropical rain forestsJOURNAL OF BIOGEOGRAPHY, Issue 2 2009Jeremy VanDerWal Abstract Aim, We created spatially explicit models of palaeovegetation stability for the rain forests of the Australia Wet Tropics. We accounted for the climatic fluctuations of the late Quaternary, improving upon previous palaeovegetation modelling for the region in terms of data, approach and coverage of predictions. Location, Australian Wet Tropics. Methods, We generated climate-based distribution models for broad rain forest vegetation types using contemporary and reconstructed ,pre-clearing' vegetation data. Models were projected onto previously published palaeoclimate scenarios dating to c. 18 kyr bp. Vegetation stability was estimated as the average likelihood that a location was suitable for rain forest through all climate scenarios. Uncertainty associated with model projections onto novel environmental conditions was also tracked. Results, Upland rain forest was found to be the most stable of the wet forest vegetation types examined. We provide evidence that the lowland rain forests were largely extirpated from the region during the last glacial maximum, with only small, marginally suitable fragments persisting in two areas. Models generated using contemporary vegetation data underestimated the area of environmental space suitable for rain forest in historical time periods. Model uncertainty resulting from projection onto novel environmental conditions was low, but generally increased with the number of years before present being modelled. Main conclusions, Climate fluctuations of the late Quaternary probably resulted in dramatic change in the extent of rain forest in the region. Pockets of high-stability upland rain forest were identified, but extreme bottlenecks of area were predicted for lowland rain forest. These factors are expected to have had a dramatic impact on the historical dynamics of population connectivity and patterns of extinction and recolonization of dependent fauna. Finally, we found that models trained on contemporary vegetation data can be problematic for reconstructing vegetation patterns under novel environmental conditions. Climatic tolerances and the historical extent of vegetation may be underestimated when artificial vegetation boundaries imposed by land clearing are not taken into account. [source] Dry spots and wet spots in the Andean hotspotJOURNAL OF BIOGEOGRAPHY, Issue 8 2007Timothy J. Killeen Abstract Aim, To explain the relationship between topography, prevailing winds and precipitation in order to identify regions with contrasting precipitation regimes and then compare floristic similarity among regions in the context of climate change. Location, Eastern slope of the tropical Andes, South America. Methods, We used information sources in the public domain to identify the relationship between geology, topography, prevailing wind patterns and precipitation. Areas with contrasting precipitation regimes were identified and compared for their floristic similarity. Results, We identify spatially separate super-humid, humid and relatively dry regions on the eastern slope of the Andes and show how they are formed by the interaction of prevailing winds, diurnally varying atmospheric circulations and the local topography of the Andes. One key aspect related to the formation of these climatically distinct regions is the South American low-level jet (SALLJ), a relatively steady wind gyre that flows pole-ward along the eastern slopes of the Andes and is part of the gyre associated with the Atlantic trade winds that cross the Amazon Basin. The strongest winds of the SALLJ occur near the ,elbow of the Andes' at 18° S. Super-humid regions with mean annual precipitation greater than 3500 mm, are associated with a ,favourable' combination of topography, wind-flow orientation and local air circulation that favours ascent at certain hours of the day. Much drier regions, with mean annual precipitation less than 1500 mm, are associated with ,unfavourable' topographic orientation with respect to the mean winds and areas of reduced cloudiness produced by local breezes that moderate the cloudiness. We show the distribution of satellite-estimated frequency of cloudiness and offer hypotheses to explain the occurrence of these patterns and to explain regions of anomalously low precipitation in Bolivia and northern Peru. Floristic analysis shows that overall similarity among all circumscribed regions of this study is low; however, similarity among super-humid and humid regions is greater when compared with similarity among dry regions. Spatially separate areas with humid and super-humid precipitation regimes show similarity gradients that are correlated with latitude (proximity) and precipitation. Main conclusions, The distribution of precipitation on the eastern slope of the Andes is not simply correlated with latitude, as is often assumed, but is the result of the interplay between wind and topography. Understanding the phenomena responsible for producing the observed precipitation patterns is important for mapping and modelling biodiversity, as well as for interpreting both past and future climate scenarios and the impact of climate change on biodiversity. Super-humid and dry regions have topographic characteristics that contribute to local climatic stability and may represent ancestral refugia for biodiversity; these regions are a conservation priority due to their unique climatic characteristics and the biodiversity associated with those characteristics. [source] Evaporative enrichment and time lags between ,18O of leaf water and organic pools in a pine standPLANT CELL & ENVIRONMENT, Issue 5 2007ROMAIN L. BARNARD ABSTRACT Understanding ecosystem water fluxes has gained increasing attention, as climate scenarios predict a drier environment for many parts of the world. Evaporative enrichment of 18O (,18O) of leaf water and subsequent enrichment of plant organic matter can be used to characterize environmental and physiological factors that control evaporation, based on a recently established mechanistic model. In a Pinus sylvestris forest, we measured the dynamics of oxygen isotopic composition (,18O) every 6 h for 4 d in atmospheric water vapour, xylem sap, leaf water and water-soluble organic matter in current (N) and previous year (N-1) needles, phloem sap, together with leaf gas exchange for pooled N and N-1 needles, and relevant micrometeorological variables. Leaf water ,18O showed strong diel periodicity, while ,18O in atmospheric water vapour and in xylem sap showed little variation. The ,18O was consistently lower for N than for N-1 needles, possibly related to phenological stage. Modelled leaf water ,18O showed good agreement with measured values when applying a non-steady state evaporative enrichment model including a Péclet effect. We determined the time lags between ,18O signals from leaf water to water-soluble foliar organic matter and to phloem sap at different locations down the trunk, which clearly demonstrated the relevance of considering these time-lag effects for carbon transport, source-sink and carbon flux partitioning studies. [source] Empirically downscaled temperature scenarios for SvalbardATMOSPHERIC SCIENCE LETTERS, Issue 2-4 2002R. E. Benestad Abstract Empirically downscaled climate scenarios are presented for the Svalbard region, based on mixed 2-meter temperature and sea level pressure fields. The scenarios are derived using the large-scale fields from the ECHAM4-GSDIO, HadCM3, and NCAR-CSM climate change experiments, and utilizing common empirical orthogonal functions. There are substantial differences between the scenarios derived from the various models. Those downscaled from the HadCM3 model indicate significantly stronger warming than those based on the ECHAM4-GSDIO and NCAR-CSM models. Much of these differences can be explained in terms of the different descriptions of the sea-ice extent. The sea-ice in the HadCM3 scenario is subject to a substantial retreat in the Barents Sea, whereas there is no melting in the same region in the NCAR-CSM model. Copyright © 2003 Royal Meteorological Society. [source] Sensitivity of tropical forests to climate change in the humid tropics of north QueenslandAUSTRAL ECOLOGY, Issue 6 2001David W. Hilbert Abstract An analysis using an artificial neural network model suggests that the tropical forests of north Queensland are highly sensitive to climate change within the range that is likely to occur in the next 50,100 years. The distribution and extent of environments suitable for 15 structural forest types were estimated, using the model, in 10 climate scenarios that include warming up to 1°C and altered precipitation from ,10% to +20%. Large changes in the distribution of forest environments are predicted with even minor climate change. Increased precipitation favours some rainforest types, whereas decreased rainfall increases the area suitable for forests dominated by sclerophyllous genera such as Eucalyptus and Allocasuarina. Rainforest environments respond differentially to increased temperature. The area of lowland mesophyll vine forest environments increases with warming, whereas upland complex notophyll vine forest environments respond either positively or negatively to temperature, depending on precipitation. Highland rainforest environments (simple notophyll and simple microphyll vine fern forests and thickets), the habitat for many of the region's endemic vertebrates, decrease by 50% with only a 1°C warming. Estimates of the stress to present forests resulting from spatial shifts of forest environments (assuming no change in the present forest distributions) indicate that several forest types would be highly stressed by a 1°C warming and most are sensitive to any change in rainfall. Most forests will experience climates in the near future that are more appropriate to some other structural forest type. Thus, the propensity for ecological change in the region is high and, in the long term, significant shifts in the extent and spatial distribution of forests are likely. A detailed spatial analysis of the sensitivity to climate change indicates that the strongest effects of climate change will be experienced at boundaries between forest classes and in ecotonal communities between rainforest and open woodland. [source] Climate Change and the Economics of Farm Management in the Face of Land Degradation: Dryland Salinity in Western AustraliaCANADIAN JOURNAL OF AGRICULTURAL ECONOMICS, Issue 4 2005Michele John Projected changes in climate would affect not only the profitability of agriculture, but also the way it is managed, including the way issues of land conservation are managed. This study provides a detailed analysis of these effects for an extensive dryland farming system in south-west Australia. Using a whole-farm linear programming model, with discrete stochastic programming to represent climate risk, we explore the consequences of several climate scenarios. Climate change may reduce farm profitability in the study region by 50% or more compared to historical climate. Results suggest a decline in the area of crop on farms, due to greater probability of poor seasons and lower probability of very good seasons. The reduced profitability of farms would likely affect the capacity of farmers to adopt some practices that have been recommended to farmers to prevent land degradation through dryland salinization. In particular, establishment of perennial pastures (lucerne or alfalfa, Medicago sativa), woody perennials ("oil mallees", Eucalyptus spp.), and salt-tolerant shrubs for grazing ("saltland pastures", Atriplex spp.) may become slightly more attractive in the long run (i.e., relative to other enterprises) but harder to adopt due to their high establishment costs in the context of lower disposable income. Les changements climatiques prévus influeraient non seulement sur la rentabilité de l'agriculture, mais aussi sur la gestion, y compris la façon de gérer les questions de conservation des terres. La présente étude offre une analyse détaillée de ces effets sur un système d'aridoculture extensive dans le sud-ouest de l'Australie. À l'aide d'un modèle de programmation linéaire d'une exploitation, comprenant une programmation stochastique discrète pour représenter le risque lié aux changements climatiques, nous avons examiné les conséquences de plusieurs scénarios climatiques. Dans la région à l'étude, un changement climatique pourrait diminuer la rentabilité d'une exploitation de 50 p. 100 ou plus par rapport au climat historique. Les résultats ont laissé supposer un déclin dans le domaine des cultures, en raison de la probabilité accrue de connaître des saisons médiocres et de la probabilité diminuée de connaître saisons exceptionnelles. Une diminution de la rentabilité des exploitations freinerait probablement la capacité des producteurs à adopter certaines pratiques recommandées pour prévenir la dégradation des sols par la salinisation des terres arides. Certaines pratiques, telles que l'établissement de pâturages de plantes fourragères vivaces (luzerne ou Medicago sativa), de plantes ligneuses vivaces (Eucalyptus) et d'arbustes tolérants au sel (Atriplex), peuvent devenir un peu plus attrayantes à long terme (c'est-à-dire, comparativement à d'autres pratiques), mais également plus difficiles à adopter en raison des coûts d'établissement élevés dans un contexte de faible revenu disponible. [source] |