Climate Relationships (climate + relationships)

Distribution by Scientific Domains


Selected Abstracts


Associations between carbon isotope ratios of ecosystem respiration, water availability and canopy conductance

GLOBAL CHANGE BIOLOGY, Issue 10 2004
N. G. McDowell
Abstract We tested the hypothesis that the stable carbon isotope signature of ecosystem respiration (,13CR) was regulated by canopy conductance (Gc) using weekly Keeling plots (n=51) from a semiarid old-growth ponderosa pine (Pinus ponderosa) forest in Oregon, USA. For a comparison of forests in two contrasting climates we also evaluated trends in ,13CR from a wet 20-year-old Douglas-fir (Pseudotsuga menziesii) plantation located near the Pacific Ocean. Intraannual variability in ,13CR was greater than 8.0, at both sites, was highest during autumn, winter, and spring when rainfall was abundant, and lowest during summer drought. The ,13CR of the dry pine forest was consistently more positive than the wetter Douglas-fir forest (mean annual ,13CR: ,25.41, vs. ,26.23,, respectively, P=0.07). At the Douglas-fir forest, ,13CR,climate relationships were consistent with predictions based on stomatal regulation of carbon isotope discrimination (,). Soil water content (SWC) and vapor pressure deficit (vpd) were the most important factors governing ,13CR in this forest throughout the year. In contrast, ,13CR at the pine forest was relatively insensitive to SWC or vpd, and exhibited a smaller drought-related enrichment (,2,) than the enrichment observed during drought at the Douglas-fir forest (,5,). Groundwater access at the pine forest may buffer canopy,gas exchange from drought. Despite this potential buffering, ,13CR at the pine forest was significantly but weakly related to canopy conductance (Gc), suggesting that ,13CR remains coupled to canopy,gas exchange despite groundwater access. During drought, ,13CR was strongly correlated with soil temperature at both forests. The hypothesis that canopy-level physiology is a critical regulator of ,13CR was supported; however, belowground respiration may become more important during rain-free periods. [source]


Plant species richness in continental southern Siberia: effects of pH and climate in the context of the species pool hypothesis

GLOBAL ECOLOGY, Issue 5 2007
Milan Chytrý
ABSTRACT Aim, Many high-latitude floras contain more calcicole than calcifuge vascular plant species. The species pool hypothesis explains this pattern through an historical abundance of high-pH soils in the Pleistocene and an associated opportunity for the evolutionary accumulation of calcicoles. To obtain insights into the history of calcicole/calcifuge patterns, we studied species richness,pH,climate relationships across a climatic gradient, which included cool and dry landscapes resembling the Pleistocene environments of northern Eurasia. Location, Western Sayan Mountains, southern Siberia. Methods, Vegetation and environmental variables were sampled at steppe, forest and tundra sites varying in climate and soil pH, which ranged from 3.7 to 8.6. Species richness was related to pH and other variables using linear models and regression trees. Results, Species richness is higher in areas with warmer winters and at medium altitudes that are warmer than the mountains and wetter than the lowlands. In treeless vegetation, the species richness,pH relationship is unimodal. In tundra vegetation, which occurs on low-pH soils, richness increases with pH, but it decreases in steppes, which have high-pH soils. In forests, where soils are more acidic than in the open landscape, the species richness,pH relationship is monotonic positive. Most species occur on soils with a pH of 6,7. Main conclusions, Soil pH in continental southern Siberia is strongly negatively correlated with precipitation, and species richness is determined by the opposite effects of these two variables. Species richness increases with pH until the soil is very dry. In dry soils, pH is high but species richness decreases due to drought stress. Thus, the species richness,pH relationship is unimodal in treeless vegetation. Trees do not grow on the driest soils, which results in a positive species richness,pH relationship in forests. If modern species richness resulted mainly from the species pool effects, it would suggest that historically common habitats had moderate precipitation and slightly acidic to neutral soils. [source]


Body size,climate relationships of European spiders

JOURNAL OF BIOGEOGRAPHY, Issue 3 2010
Wiebke Entling
Abstract Aim, Geographic body size patterns of mammals and birds can be partly understood under the framework of Bergmann's rule. Climatic influences on body size of invertebrates, however, appear highly variable and lack a comparable, generally applicable theoretical framework. We derived predictions for body size,climate relationships for spiders from the literature and tested them using three datasets of variable spatial extent and grain. Location, Europe. Methods, To distinguish climate from space, we compared clines in body size within three datasets with different degrees of co-variation between latitude and climate. These datasets were: (1) regional spider faunas from 40 European countries and large islands; (2) local spider assemblages from standardized samples in 32 habitats across Europe; and (3) local spider assemblages from Central European habitats. In the latter dataset climatic conditions were determined more by habitat type than by geographic position, and therefore this dataset provided a non-spatial gradient of various microclimates. Spider body size was studied in relation to latitude, temperature and water availability. Results, In all three datasets the mean body size of spider assemblages increased from cool/moist to warm/dry environments. This increase could be accounted for by turnover from small-bodied to large-bodied spider families. Body size,climate relationships within families were inconsistent. Main conclusions, Starvation resistance and accelerated maturation can be ruled out as explanations for the body size clines recorded, because they predict the inverse of the observed relationship between spider body size and temperature. The relationship between body size and climate was partly independent of geographic position. Thus, the restriction of large-bodied spiders to their glacial refugia owing to dispersal limitations can be excluded. Our results are consistent with mechanisms invoking metabolic rate, desiccation resistance and community interactions to predict a decrease in body size from warm and dry to cool and moist conditions. [source]


Pollen,plant,climate relationships in sub-Saharan Africa

JOURNAL OF BIOGEOGRAPHY, Issue 3 2007
Julie Watrin
Abstract Aim, To demonstrate that incorporating the bioclimatic range of possible contributor plants leads to improved accuracy in interpreting the palaeoclimatic record of taxonomically complex pollen types. Location, North Tropical Africa. Methods, The geographical ranges of selected African plants were extracted from the literature and geo-referenced. These plant ranges were compared with the pollen percentages obtained from a network of surface sediments. Climate-response surfaces were graphed for each pollen taxon and each corresponding plant species. Results, Several patterns can be identified, including taxa for which the pollen and plant distributions coincide, and others where the range limits diverge. Some pollen types display a reduced climate range compared with that of the corresponding plant species, due to low pollen production and/or dispersal. For other taxa, corresponding to high pollen producers such as pioneer taxa, pollen types display a larger climatic envelope than that of the corresponding plants. The number of species contained in a pollen taxon is an important factor, as the botanical species included in a taxon may have different geographical and climate distributions. Main conclusions, The comparison between pollen and plant distributions is an essential step towards more precise vegetation and climate reconstructions in Africa, as it identifies taxa that have a high correspondence between pollen and plant distribution patterns. Our method is a useful tool to reassess biome reconstructions in Africa and to characterize accurately the vegetation and climate conditions at a regional scale, from pollen data. [source]


Seasonal differences in photosynthesis between the C3 and C4 subspecies of Alloteropsis semialata are offset by frost and drought

PLANT CELL & ENVIRONMENT, Issue 7 2008
DOUGLAS G. IBRAHIM
ABSTRACT The regional abundance of C4 grasses is strongly controlled by temperature, however, the role of precipitation is less clear. Progress in elucidating the direct effects of photosynthetic pathway on these climate relationships is hindered by the significant genetic divergence between major C3 and C4 grass lineages. We addressed this problem by examining seasonal climate responses of photosynthesis in Alloteropsis semialata, a unique grass species with both C3 and C4 subspecies. Experimental manipulation of rainfall in a common garden in South Africa tested the hypotheses that: (1) photosynthesis is greater in the C4 than C3 subspecies under high summer temperatures, but this pattern is reversed at low winter temperatures; and (2) the photosynthetic advantage of C4 plants is enhanced during drought events. Measurements of leaf gas exchange over 2 years showed a significant photosynthetic advantage for the C4 subspecies under irrigated conditions from spring through autumn. However, the C4 leaves were killed by winter frost, while photosynthesis continued in the C3 plants. Unexpectedly, the C4 subspecies also lost its photosynthetic advantage during natural drought events, despite greater water-use efficiency under irrigated conditions. This study highlights previously unrecognized roles for climatic extremes in determining the ecological success of C3 and C4 grasses. [source]