Climate Records (climate + record)

Distribution by Scientific Domains


Selected Abstracts


IDENTIFICATION OF CLIMATE CONTROLS ON THE DYNAMIC BEHAVIOUR OF THE SUBARCTIC GLACIER SALAJEKNA, NORTHERN SCANDINAVIA

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 1 2005
PER KLINGBJER
ABSTRACT. In this paper we describe the dynamic behaviour of Salajekna, a valley glacier, over the last 200 years using terrestrial observations, in situ measurements, remote sensing observations and glacier reconstructions. The response time of the glacier was calculated using analytical models and field measurements. We were subsequently able to attribute specific dynamic responses to climate trends in the available climate record. The glacier's historical maximum extension was reached around 1880,1910 and was the result of a more continental climate with multi-modal airflows in the late 18th and early 19th centuries. A transition to more maritime conditions in the mid-19th century resulted in a near-continuous 20th century retreat before the glacier adjusted to a near-steady state. [source]


Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records,

JOURNAL OF QUATERNARY SCIENCE, Issue 1 2009
Mike Walker
Abstract The Greenland ice core from NorthGRIP (NGRIP) contains a proxy climate record across the Pleistocene,Holocene boundary of unprecedented clarity and resolution. Analysis of an array of physical and chemical parameters within the ice enables the base of the Holocene, as reflected in the first signs of climatic warming at the end of the Younger Dryas/Greenland Stadial 1 cold phase, to be located with a high degree of precision. This climatic event is most clearly reflected in an abrupt shift in deuterium excess values, accompanied by more gradual changes in ,18O, dust concentration, a range of chemical species, and annual layer thickness. A timescale based on multi-parameter annual layer counting provides an age of 11 700 calendar yr b2,k (before AD 2000) for the base of the Holocene, with a maximum counting error of 99,yr. A proposal that an archived core from this unique sequence should constitute the Global Stratotype Section and Point (GSSP) for the base of the Holocene Series/Epoch (Quaternary System/Period) has been ratified by the International Union of Geological Sciences. Five auxiliary stratotypes for the Pleistocene,Holocene boundary have also been recognised. Copyright © 2008 John Wiley & Sons, Ltd. [source]


A multiproxy climate record from a raised bog in County Fermanagh, Northern Ireland: a critical examination of the link between bog surface wetness and solar variability,

JOURNAL OF QUATERNARY SCIENCE, Issue 7 2007
Graeme T. Swindles
Abstract A proxy climate record from a raised bog in County Fermanagh, Northern Ireland, is presented. The record spans the interval between 2850,cal.,yr,BC and cal. yr AD 1000 and chronological control is achieved through the use of tephrochronology and 14C dating, including a wiggle-match on one section of the record. Palaeoclimatic inferences are based on a combination of a testate amoebae-derived water table reconstruction, peat humification and plant macrofossil analyses. This multiproxy approach enables proxy-specific effects to be identified. Major wet shifts are registered in the proxies at ca. 1510,cal.,yr,BC, 750,cal.,yr,BC and cal. yr AD 470. Smaller magnitude shifts to wetter conditions are also recorded at ca. 380,cal.,yr,BC, 150,cal.,yr,BC, cal. yr AD 180, and cal. yr AD 690. It is hypothesised that the wet shifts are not merely local events as they appear to be linked to wider climate deteriorations in northwest Europe. Harmonic analysis of the proxies illustrates statistically significant periodicities of 580, 423,373, 307 and 265 years that may be related to wider Holocene climate cycles. This paper illustrates how the timing of climate changes registered in peat profiles records can be precisely constrained using tephrochronology to examine possible climatic responses to solar forcing. Relying on interpolated chronologies with considerable dating uncertainty must be avoided if the climatic responses to forcing mechanisms are to be fully understood. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Isotopic climate record in a Holocene stalagmite from Ursilor Cave (Romania)

JOURNAL OF QUATERNARY SCIENCE, Issue 4 2002
Bogdan Petroniu Onac
Abstract The PU-2 stalagmite from Ursilor Cave provides the first dated Romanian isotope record for the Holocene. The overall growth rate of the speleothem was 3.5 cm kyr,1, corresponding to a temporal resolution of 142 y between each isotope analysis. The ,Hendy' tests indicate that isotopic equilibrium conditions occurred during the formation of PU-2, and hence that it is suitable for palaeoclimatic studies. The relationship between ,18O and temperature was found to be positive. This can be interpreted either as rain-out with distance from the west-northwest ocean source of evaporation or shifts in air mass source with changing North Atlantic Oscillation indices. Applying five U,Th thermal ionisation mass spectrometric (TIMS) dates to a 17.5 cm isotope profile (,18O and ,13C) along the stalagmite growth axis enabled a tentative interpretation of the palaeoclimate signal over the past 7.1 kyr. Spikes of depleted isotopic ,18O values are centred near ca. 7, ca. 5.2 and ca. 4 ka, reflecting cool conditions. The record shows two warm intervals between ca. 3.8 and ca. 3.2 ka (the maximum warmth) and from ca. 2 to ca. 1.4 ka, when the ,18O values were less negative than present. The ,Holocene Climate Optimum' spanning the time interval from ca. 6.8 to ca. 4.4 ka is not well expressed in the PU-2 stalagmite. Individual spikes of lighter ,13C are interpreted as indicative of periods of heavy rainfall, at ca. 7, ca. 5.5, and ca. 3.5 ka. The overall trend to lighter ,13C in the PU-2 stalagmite may reflect a gradual decrease in water,rock interaction. The results demonstrate that the effect of North Atlantic oceanic changes extended to the investigated area. Nevertheless, some differences in temporal correlation and intensity of stable isotopic response to these climatic events have been found, but the exact nature of these differences and the underlying mechanism is yet to be determined. Copyright © 2002 John Wiley & Sons, Ltd. [source]


A Bayesian hierarchical extreme value model for lichenometry

ENVIRONMETRICS, Issue 6 2006
Daniel Cooley
Abstract Currently, there is a tremendous scientific research effort in the area of climate change. In this paper, our motivation is to improve the understanding of historical climatic events such as the Little Ice Age (LIA), a period of relatively cold weather around 1450,1850 AD. Although the LIA is well documented in Europe, its extent and timing are not known in areas of the globe where climatological records were not kept during this period. To study the climate, which predates historical records, proxy climate records must be used. A proxy record for the timing of climatic cooling events are the ages of the moraines left behind by glacial advances. Unfortunately, to determine the ages of these moraines in alpine environments there is little material available but lichens. Hence, lichenometry was developed to determine the ages of glacial landforms by using lichen measurements. To our knowledge, this article provides the first attempt at deriving a comprehensive statistical model for lichenometry. Our model foundation is based on extreme value theory because only the largest lichens are measured in lichenometry studies. This application is novel to extreme value theory because the quantities of interest (the ages of climatic events) are not the measured quantities (lichen diameters), i.e., it is a inverse problem. We model the lichen measurements with the generalized extreme value (GEV) distribution, upon which a Bayesian hierarchical model is built. The hierarchical model enables estimation of the hidden covariate ages of the moraines. The model also allows for pooling of data from different locations and evaluation of spatial differences in lichen growth. Parameter inference is obtained using a straightforward Markov Chain Monte Carlo method. Our procedure is applied to data gathered from the Cordillera Real region in Bolivia. Copyright © 2006 John Wiley & Sons, Ltd. [source]


CLIMATE OSCILLATIONS AS RECORDED IN SVALBARD ICE CORE ,18O RECORDS BETWEEN AD 1200 AND 1997

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 1 2005
ELISABETH ISAKSSON
ABSTRACT. We apply two different time series analytical tools to ,18O records from two Svalbard ice cores. One ice core is from Lomonosovfonna at 1250 ma.s.l. and the other from Austfonna at 750 m a.s.l. These cores are estimated to cover at least the past 800 years and have been dated using a combination of known reference horizons and glacial modelling. Wavelet analysis reveals low frequency oscillations on the 60,120,year scale on the lower elevation site Austfonna while the higher altitude site on Lomonosovfonna does not reveal such variability throughout the record. The second method, Significant Zero Crossing of Derivates (SiZer) does not resolve the low-frequency periodicity seen in the wavelet analysis. The low-frequency variability resolved by the wavelet analysis is similar to what has been found in various climate records including instrumental temperatures and tree-rings, and has been proposed as the most important oscillation for the observed trends in Arctic air temperatures. [source]


Climate,growth relationships of tropical tree species in West Africa and their potential for climate reconstruction

GLOBAL CHANGE BIOLOGY, Issue 7 2006
JOCHEN SCHÖNGART
Abstract Most tropical regions are facing historical difficulties of generating biologically reconstructed long-term climate records. Dendrochronology (tree-ring studies) is a powerful tool to develop high-resolution and exactly dated proxies for climate reconstruction. Owing to the seasonal variation in rainfall we expected the formation of annual tree rings in the wood of tropical West African tree species. In the central-western part of Benin (upper Ouémé catchment, UOC) and in northeastern Ivory Coast (Comoé National Park, CNP) we investigated the relationship between climate (precipitation, sea surface temperature (SST)) and tree rings and show their potential for climate reconstruction. Wood samples of almost 200 trees belonging to six species in the UOC and CNP served to develop climate-sensitive ring-width chronologies using standard dendrochronological techniques. The relationship between local precipitation, monthly SST anomalies in the Gulf of Guinea, El Niño- Southern Oscillation (ENSO) and ring-width indices was performed by simple regression analyses, two sample tests and cross-spectral analysis. A low-pass filter was used to highlight the decadal variability in rainfall of the UOC site. All tree species showed significant relationships with annual precipitation proving the existence of annual tree rings. ENSO signals could not be detected in the ring-width patterns. For legume tree species at the UOC site significant relationships could be found between SST anomalies in the Gulf of Guinea indicating correlations at periods of 5.1,4.1 and 2.3 years. Our findings accurately show the relationship between tree growth, local precipitation and SST anomalies in the Gulf of Guinea possibly associated with worldwide SST patterns. A master chronology enabled the reconstruction of the annual precipitation in the UOC to the year 1840. Time series analysis suggest increasing arid conditions during the last 160 years which may have large impacts on the hydrological cycles and consequently on the ecosystem dynamics and the development of socio-economic cultures and sectors in the Guinea-Congolian/Sudanian region. [source]


Simulating the response of a closed-basin lake to recent climate changes in tropical West Africa (Lake Bosumtwi, Ghana)

HYDROLOGICAL PROCESSES, Issue 13 2007
Timothy M. Shanahan
Abstract Historical changes in the level of Lake Bosumtwi, Ghana, have been simulated using a catchment-scale hydrological model in order to assess the importance of changes in climate and land use on lake water balance on a monthly basis for the period 1939,2004. Several commonly used models for computing evaporation in data-sparse regions are compared, including the Penman, the energy budget, and the Priestley,Taylor methods. Based on a comparison with recorded lake level variations, the model with the energy-budget evaporation model subcomponent is most effective at reproducing observed lake level variations using regional climate records. A sensitivity analysis using this model indicates that Lake Bosumtwi is highly sensitive to changes in precipitation, cloudiness and temperature. However, the model is also sensitive to changes in runoff related to vegetation, and this factor needs to be considered in simulating lake level variations. Both interannual and longer-term changes in lake level over the last 65 years appear to have been caused primarily by changes in precipitation, though the model also suggests that the drop in lake level over the last few decades has been moderated by changes in cloudiness and temperature over that time. Based on its effectiveness at simulating the magnitude and rate of lake level response to changing climate over the historical record, this model offers a potential future opportunity to examine the palaeoclimatic factors causing past lake level fluctuations preserved in the geological record at Lake Bosumtwi. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Uncertainties in early Central England temperatures

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 8 2010
David E. Parker
Abstract Uncertainties in historical climate records constrain our understanding of natural variability of climate, but estimation of these uncertainties enables us to place recent climate events and extremes into a realistic historical perspective. Uncertainties in Central England temperature (CET) since 1878 have already been estimated; here we estimate uncertainties back to the start of the record in 1659, using Manley's publications and more recently developed techniques for estimating spatial sampling errors. Estimated monthly standard errors are of the order of 0.5 °C up to the 1720s, but 0.3 °C subsequently when more observing sites were used. Corresponding annual standard errors are up to nearly 0.4 °C in the earliest years but around 0.15 °C after the 1720s. Daily standard errors from 1772, when the daily series begins, up to 1877 are of the order of 1 °C because only a single site was used at any one time. Inter-diurnal variability in the daily CET record appears greater before 1878 than subsequently, partly because the sites were in the Midlands or southern England where day-to-day temperature variability exceeds that in the Lancashire part of Manley's CET. Copyright © 2009 Royal Meteorological Society [source]


Reconstruction of the North Atlantic Oscillation, 1429,1983

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 12 2001
Mary F. Glueck
Abstract The North Atlantic Oscillation (NAO) is considered to be the dominant mode of winter atmospheric variability in the Northern Hemisphere (Barnston AG, Livezey RE. 1987. Classification, seasonality and persistence of low frequency atmospheric circulation patterns. Monthly Weather Review115: 1083,1126), especially in the North Atlantic region. A better understanding of its recent variability in the context of pre-instrumental period variations is critical for prediction purposes. A 555-year (1429,1983) multi-proxy reconstruction of the cool season NAO, calibrated against the Lisbon,Iceland (LISJHI) NAO, is presented. Predictor variables include tree-ring chronologies from Morocco and Finland, GISP2 ,18O annual series, and a GISP2 snow accumulation record. Although the reconstructed values are generally lower than the instrumental values during the calibration period (1863,1983), the final reconstruction does capture the low frequency of the instrumental NAO. The reconstruction compares favourably with existing shorter NAO reconstructions and with the instrumental NAO. The variability in the reconstructed NAO is also discussed within the context of lengthy regional climate records. Results suggest that the occurrence and length of the recent persistently high phase of the NAO are not unusual over the 555-year period of time, but that the magnitude of some of the instrumental values may, in fact, be unique. Copyright © 2001 Royal Meteorological Society [source]


Regional variability of climate,growth relationships in Pinus cembra high elevation forests in the Alps

JOURNAL OF ECOLOGY, Issue 5 2007
MARCO CARRER
Summary 1The tree-ring growth response of stone pine (Pinus cembra L.) to climatic variability was studied in the Alps. The aims were (i) to assess tree-ring growth patterns at different spatial-temporal scales; (ii) to identify the climate parameters that explain most of the variability in radial growth at different time domains; and (iii) to study past and current trends in radial growth and climate,growth relationships at different locations. 2High- and low-frequency stone pine chronologies were compiled for 30 treeline sites on the French and Italian Alps. We used gridded climate data computed from 200 years of instrumental records from an extensive Alpine network. Climate,growth relationships were computed with bootstrap correlation functions and their stationarity and consistency over time assessed with moving correlation. 3No spatial patterns were detected in stone pine chronology statistics despite the regional clustering observed in tree-ring series and climate responses. This can be attributed to (i) local weather variability; (ii) different biophysical conditions caused by soil moisture, solar radiation, snowmelt dynamics and growing season length; and (iii) forest stand history and age structure, the expression of long-term land use and disturbances. 4The exceptionally long-term climate records allowed significant stone pine growth response changes to be assessed at both annual and decadal time scales. Winter conditions and spring,summer temperatures mainly affected the growing season length, in addition to site carbon and water balance. Most of these limiting factors varied spatially and temporally along the latitudinal and longitudinal gradients in response to the corresponding changes in local conditions. 5Our results show evidence of a clear response variability of Pinus cembra to climate limiting factors, at both spatial and temporal scale. Such knowledge extended to other species and regions will provide better estimates of the effect of climate variability on species distribution and dynamics within global change scenarios and more accurate past climate reconstruction and forest ecosystem modelling. [source]


Detection and correction of artificial shifts in climate series

JOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES C (APPLIED STATISTICS), Issue 3 2004
Henri Caussinus
Summary., Many long instrumental climate records are available and might provide useful information in climate research. These series are usually affected by artificial shifts, due to changes in the conditions of measurement and various kinds of spurious data. A comparison with surrounding weather-stations by means of a suitable two-factor model allows us to check the reliability of the series. An adapted penalized log-likelihood procedure is used to detect an unknown number of breaks and outliers. An example concerning temperature series from France confirms that a systematic comparison of the series together is valuable and allows us to correct the data even when no reliable series can be taken as a reference. [source]


Exploratory Precipitation in North-Central China during the Past Four Centuries

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2010
Liang YI
Abstract: Two robust precipitation reconstructions were conducted by combining tree-ring chronologies, dryness/wetness indices from historical documents, and climate data from the global grid. It was found that the recurrent drought history of a region can help us understand the variability of precipitation. Several dry/wet periods during the past four centuries and potential cycles of precipitation variation were determined. Furthermore, the reconstructions are not only consistent well with each other in North-central China, but also in good agreement with variations of precipitation in northeastern Mongolia, the Longxi area in Gangsu Province and the Dulan area of Qinghai Province, and the snow accumulation of the Guliya glacier. These synchronous variations indicate that it is valuable to study various climate records, find common information and determine the driving force of climate change. [source]


Mangshan Loess in Central China and the Paleomonsoon Variations since the Last Interglaciation

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2004
JIANG Fuchu
Abstract, The Mangshan Yuan is a loess platform on the southern bank of the Yellow River, which is located in northwestern Zhengzhou of Henan Province, China. The typical Zhaoxiayu section of the Mangshan Yuan preserves stratigraphical loess units above S10 with a total thickness of 172.1 m, which includes 15.7 m of the last interglacial paleosol S1, 77.3 m of the last glacial loess L1 that consist of 41.6 m of the late stade L1LL1, 13.2 m of the interstade L1SS1 and 22.5 m of the early stade L1LL2. Based on the age marking points by correlating magnetic susceptibility of the section with the SPECMAP curve, the timescale of the section was constructed, and the average accumulation rate and the resolution of each loess strata over the S2 were subsequently calculated using the susceptibility age model. The results indicate that strata units developed in the glacial, interglacial stages, stadial and interstadial show substantial differences in grain size, average accumulation rate and time resolution ub the Zhaoxiayu section. Specifically, the average accumulation rate of the loess L1LL1 is 3.45 mm/a, whereas that of paleosol S1 is only 0.28 mm/a. Based on the high-resolution records of magnetic susceptibility and >45 ,m fraction percentage of the loess-paleosol, the summer and winter monsoon variations as well as their interrelations since the last interglaciation have been discussed, which were correlated with the SPECMAP and the GRIP climate records. [source]