Home About us Contact | |||
Circumventricular Organs (circumventricular + organ)
Selected AbstractsCirculating Angiotensin II Activates Neurones in Circumventricular Organs of the Lamina Terminalis That Project to the Bed Nucleus of the Stria TerminalisJOURNAL OF NEUROENDOCRINOLOGY, Issue 8 2003N. Sunn Abstract The aim of this study was to determine, in conscious rats, whether elevated concentrations of circulating angiotensin II activate neurones in both the subfornical organ and organum vasculosum of the lamina terminalis (OVLT) that project to the bed nucleus of the stria terminalis (BNST). The strategy employed was to colocalize retrogradely transported cholera toxin B subunit (CTB) from the BNST, with elevated levels of Fos protein in response to angiotensin II. Circulating angiotensin II concentrations were increased by either intravenous infusion of angiotensin II or subcutaneous injection of isoproterenol. Neurones exhibiting Fos in response to angiotensin II were present in the subfornical organ, predominantly in its central core but with some also seen in its peripheral aspect, the dorsal and lateral margins of the OVLT, the supraoptic nucleus and the parvo- and magnocellular divisions of the paraventricular nucleus. Fos-labelling was not apparent in control rats infused with isotonic saline intravenously or injected with either CTB or CTB conjugated to gold particles (CTB-gold) only. Of the neurones in the subfornical organ that were shown by retrograde labelling to project to BNST, approximately 50% expressed Fos in response to isoproterenol. This stimulus also increased Fos in 33% of neurones in the OVLT that project to BNST. Double-labelled neurones were concentrated in the central core of the subfornical organ and lateral margins of the OVLT in response to increased circulating angiotensin II resulting from isoproterenol treatment. These data support a role for circulating angiotensin II acting either directly or indirectly on neurones in subfornical organ and OVLT that project to the BNST and provide further evidence of functional regionalization within the subfornical organ and the OVLT. The function of these pathways is yet to be determined; however, a role in body fluid homeostasis is possible. [source] Central nitric oxide blocks vasopressin, oxytocin and atrial natriuretic peptide release and antidiuretic and natriuretic responses induced by central angiotensin II in conscious ratsEXPERIMENTAL PHYSIOLOGY, Issue 5 2007Wagner Luis Reis The presence of nitric oxide synthase (NOS), the enzyme that catalyses the formation of nitric oxide (NO), in the circumventricular organs and magnocellular neurones suggests an important role of NO in the modulation of vasopressin (AVP) and oxytocin (OT) release. Intracerebroventricular (i.c.v.) injection of angiotensin II (Ang II) stimulates the release of AVP, OT and atrial natriuretic peptide (ANP), with the resultant antidiuretic and natriuretic effects. This study investigated the interaction between nitrergic and angiotensinergic pathways on the release of AVP, OT and ANP and on urinary volume and sodium excretion in water-loaded rats. Unanaesthetized, freely moving, male Wistar rats received two water loads followed by an injection into the lateral ventricle of an inhibitor of NOS (l -NAME), a NO donor [3-morpholinylsydnoneimine chloride (SIN-1) or S -nitroso- N -acetyl penicillamine (SNAP)] or vehicle (isotonic saline) and, 20 min after, they received a second i.c.v. injection of Ang II or vehicle. Injections of l -NAME or Ang II produced an increase in plasma levels of AVP, OT and ANP, a reduction in urinary volume and an increase in sodium excretion. Pretreatment with l -NAME enhanced the Ang II-induced increase in AVP, OT and ANP release, as well as the antidiuresis and natriuresis. Injection of SIN-1 or SNAP did not modify hormonal plasma levels and urinary parameters. In contrast SNAP blocked the AVP, OT and ANP release, as well as antidiuretic and natriuretic responses induced by ANG-II. Thus, the central nitrergic system can act to inhibit AVP, OT and ANP secretion and the antidiuretic and natriuretic effects in response to Ang II. [source] Neuroinvasion in sheep transmissible spongiform encephalopathies: the role of the haematogenous routeNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 3 2009S. Sisó Background: It is generally believed that after oral exposure to transmissible spongiform encephalopathy (TSE) agents, neuroinvasion occurs via the enteric nervous system (ENS) and the autonomic nervous system. As a result, the dorsal motor nucleus of the vagus nerve is the initial point of disease-associated prion protein (PrPd) accumulation in the brain. Hypothesis and aim: If direct ENS invasion following oral infection results in an early and specific brain targeting for PrPd accumulation, such topographical distribution could be different when other routes of infection were used, highlighting distinct routes for neuroinvasion. Methods: An immunohistochemical study has been conducted on the brain of 67 preclinically infected sheep exposed to natural scrapie or to experimental TSE infection by various routes. Results: Initial PrPd accumulation consistently occurred in the dorsal motor nucleus of the vagus nerve followed by the hypothalamus, regardless of the breed of sheep, PrP genotype, TSE source and, notably, route of infection; these factors did not appear to affect the topographical progression of PrPd deposition in the brain either. Moreover, the early and consistent appearance of PrPd aggregates in the circumventricular organs, where the blood,brain barrier is absent, suggests that these organs can provide a portal for entry of prions when infectivity is present in blood. Conclusions: The haematogenous route, therefore, can represent a parallel or alternative pathway of neuroinvasion to ascending infection via the ENS/autonomic nervous system. [source] Pathogenetical significance of porencephalic lesions associated with intracerebral inoculation of sheep with the bovine spongiform encephalopathy (BSE) agentNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 3 2009S. Sisó Decreased rates of transmission of transmissible spongiform encephalopathies (TSEs) to sheep have been attributed to some polymorphisms of the prion protein (PrP) and to a ,species barrier' on interspecies experiments. In addition, the blood,brain barrier may be a further impediment to TSE neuroinvasion. The intracerebral (I/C) route is generally considered the most efficient for TSE transmission, as it may help to bypass those factors. Therefore, susceptibility of particular species to specific TSE agents is conducted by this route. Aims: This study characterizes the traumatic brain lesions associated with the I/C injection of the bovine spongiform encephalopathy agent in sheep, assesses the relevance of such lesions in the outcome of clinical disease and provides insight into the mechanisms of PrPd conversion and amplification following I/C challenge. Methods: A total of 27 hemibrains have been macroscopically and immunohistochemically examined to investigate the presence of lesions compatible with the needle track and the PrPd distribution, respectively. Results: No residual inoculum was found and the extension and severity of the traumatic brain lesions were unrelated to the clinical outcome. Sheep with PrPd accumulation in the brain also showed conspicuous focal aggregates in the porencephalic lesions and in the circumventricular organs. In contrast, sheep without PrPd deposits in the brain were also negative in the traumatic lesions. Conclusion: Overall, these findings suggest that the efficiency of the I/C route is due to effective absorption and blood recirculation of infection, rather than to primary amplification at the site of injection. [source] Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brainTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 7 2010Amandine Mullier The median eminence is one of the seven so-called circumventricular organs. It is located in the basal hypothalamus, ventral to the third ventricle and adjacent to the arcuate nucleus. This structure characteristically contains a rich capillary plexus and features a fenestrated endothelium, making it a direct target of blood-borne molecules. The median eminence also contains highly specialized ependymal cells called tanycytes, which line the floor of the third ventricle. It has been hypothesized that one of the functions of these cells is to create a barrier that prevents substances in the portal capillary spaces from entering the brain. In this paper, we report on our use of immunohistochemistry to study the expression of tight junction proteins in the cells that compose the median eminence in adult mice. Our results indicate that tanycytes of the median eminence express occludin, ZO-1, and claudin 1 and 5, but not claudin 3. Remarkably, these molecules are organized as a continuous belt around the cell bodies of the tanycytes that line the ventral part of the third ventricle. In contrast, the tanycytes at the periphery of the arcuate nucleus do not express claudin 1 and instead exhibit a disorganized expression pattern of occludin, ZO-1, and claudin 5. Consistent with these observations, permeability studies using peripheral or central injections of Evans blue dye show that only the tanycytes of the median eminence are joined at their apices by functional tight junctions, whereas tanycytes located at the level of the arcuate nucleus form a permeable layer. In conclusion, this study reveals a unique expression pattern of tight junction proteins in hypothalamic tanycytes, which yields new insights into their barrier properties. J. Comp. Neurol. 518:943,962, 2010. © 2009 Wiley-Liss, Inc. [source] Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brainTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 7 2010Amandine Mullier Abstract The median eminence is one of the seven so-called circumventricular organs. It is located in the basal hypothalamus, ventral to the third ventricle and adjacent to the arcuate nucleus. This structure characteristically contains a rich capillary plexus and features a fenestrated endothelium, making it a direct target of blood-borne molecules. The median eminence also contains highly specialized ependymal cells called tanycytes, which line the floor of the third ventricle. It has been hypothesized that one of the functions of these cells is to create a barrier that prevents substances in the portal capillary spaces from entering the brain. In this paper, we utilize immunohistochemistry to study the expression of tight junction proteins in the cells that compose the median eminence in adult mice. Our results indicate that tanycytes of the median eminence express occludin, ZO-1, and claudin 1 and 5, but not claudin 3. Remarkably, these molecules are organized as a continuous belt around the cell bodies of the tanycytes that line the ventral part of the third ventricle. In contrast, the tanycytes at the periphery of the arcuate nucleus do not express claudin 1 and instead exhibit a disorganized expression pattern of occludin, ZO-1, and claudin 5. Consistent with these observations, permeability studies using peripheral or central injections of Evans blue dye show that only the tanycytes of the median eminence are joined at their apices by functional tight junctions, whereas tanycytes located at the level of the arcuate nucleus form a permeable layer. In conclusion, this study reveals a unique expression pattern of tight junction proteins in hypothalamic tanycytes, which yields new insights into their barrier properties. J. Comp. Neurol. 518:943,962, 2010. © 2009 Wiley-Liss, Inc. [source] Right atrial stretch alters fore- and hind-brain expression of c-fos and inhibits the rapid onset of salt appetiteTHE JOURNAL OF PHYSIOLOGY, Issue 15 2008Juliana Irani Fratucci De Gobbi The inflation of an intravascular balloon positioned at the superior vena cava and right atrial junction (SVC-RAJ) reduces sodium or water intake induced by various experimental procedures (e.g. sodium depletion; hypovolaemia). In the present study we investigated if the stretch induced by a balloon at this site inhibits a rapid onset salt appetite, and if this procedure modifies the pattern of immunohistochemical labelling for Fos protein (Fos-ir) in the brain. Male Sprague,Dawley rats with SVC-RAJ balloons received a combined treatment of furosemide (Furo; 10 mg (kg bw),1) plus a low dose of the angiotensin-converting enzyme inhibitor captopril (Cap; 5 mg (kg bw),1). Balloon inflation greatly decreased the intake of 0.3 m NaCl for as long as the balloon was inflated. Balloon inflation over a 3 h period following Furo,Cap treatment decreased Fos-ir in the organum vasculosum of the lamina terminalis and the subfornical organ and increased Fos-ir in the lateral parabrachial nucleus and caudal ventrolateral medulla. The effect of balloon inflation was specific for sodium intake because it did not affect the drinking of diluted sweetened condensed milk. Balloon inflation and deflation also did not acutely change mean arterial pressure. These results suggest that activity in forebrain circumventricular organs and in hindbrain putative body fluid/cardiovascular regulatory regions is affected by loading low pressure mechanoreceptors at the SVC-RAJ, a manipulation that also attenuates salt appetite. [source] CHRONIC EFFECTS OF ANGIOTENSIN II and AT1 RECEPTOR ANTAGONISTS IN SUBFORNICAL ORGAN-LESIONED RATSCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 5-6 2005John P Collister SUMMARY 1.,Angiotensin (Ang) II is known to exert some of its effects centrally via circumventricular organs. These unique central nervous system areas lack the normal blood,brain barrier and, therefore, allow peptide hormones access to the brain. Of these, the subfornical organ (SFO) has been shown to be involved in many of the acute dipsogenic and pressor effects of AngII, but much less is known about the role of the SFO in the chronic effects of AngII. We hypothesized that the SFO is a central site involved in the chronic hypotensive effects of endogenous AT1 receptor blockade, as well as the chronic hypertensive effects of exogenously administered AngII. 2.,In order to test these hypotheses, SFO-lesioned (SFOx) or sham Sprague-Dawley rats were instrumented with venous catheters and radiotelemetric pressure transducers for intravenous administration of losartan or AngII and continuous measurement of blood pressure and heart rate. Rats were given 3 days of saline control infusion (7 mL/day of 0.9% NaCl) and were then infused with either losartan (10 mg/kg per day) or AngII (10 ng/kg per min) for 10 days. 3.,By day 4 of losartan treatment, arterial pressure had decreased 24 ± 2 and 18 ± 2 mmHg in sham (n = 9) and SFOx (n = 10) rats, respectively. Furthermore, by day 5 of AngII infusion, arterial pressure had increased 12 ± 3 mmHg in sham rats (n = 9), but only by 4 ± 1 mmHg in SFOx rats (n = 9). In each treatment group, these attenuated pressure responses in SFOx rats continued through day 10 of treatment. 4.,These results support the hypotheses that the SFO plays a role in both the hypotensive effects of chronic AT1 receptor blockade and the chronic hypertensive phase of exogenously administered AngII. [source] Area Postrema And Sympathetic Nervous System Effects Of Vasopressin And Angiotensin IICLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 5-6 2000Eileen M Hasser SUMMARY 1. Precise control over the cardiovascular system requires the integration of both neural and humoral signals related to blood volume and blood pressure. Humoral signals interact with neural systems, modulating their control over the efferent mechanisms that ultimately determine the level of pressure and volume. 2. Peptide hormones such as angiotensin (Ang)II and arginine vasopressin (AVP) act through circumventricular organs (CVO) to influence cardiovascular regulation. 3. The area postrema (AP), a CVO in the brainstem, mediates at least some of the central actions of these peptides. Vasopressin appears to act in the AP to cause sympathoinhibition and a shift in baroreflex control of the sympathetic nervous system (SNS) to lower pressures. These effects of AVP and the AP appear to be mediated by ,2 -adrenoceptor and glutamatergic mechanisms in the nucleus tractus solitarius. 4. In contrast to AVP AngII has effects in the AP to blunt baroreflex control of heart rate and cause sympathoexcitation. The effects of chronic AngII to increase activity of the SNS may be due to AP-dependent activation of neurons in the rostral ventrolateral medulla. [source] |