Circular Velocity (circular + velocity)

Distribution by Scientific Domains


Selected Abstracts


Applying the analytic theory of colliding ring galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2010
Curtis Struck
ABSTRACT An analytic theory of the waves in colliding ring galaxies was presented some years ago, but the observations were not of sufficient quality then to make quantitative comparisons. Well-resolved observations of a few systems are now available to make such comparisons, and structure imaged in several dozen systems, derived from the recent compilation of Madore, Nelson and Petrillo and the Galaxy Zoo project, can further constrain the theory. Systems with two rings are especially useful for deriving such constraints. After examining the implications of recent observations of ring sizes and structure, I extend the analytic theory, investigate limiting cases and present several levels of approximation. The theory is especially simple in the case of nearly flat rotation curves. I present observational comparisons for a few systems, including Arp 10, the Cartwheel and AM 2136,492. The fit is quite good over a large range of cases. For the Cartwheel there are discrepancies, but the areas of disagreement are suggestive of additional factors, such as multiple collisions. A specific prediction of the theory in the case of nearly flat rotation curves is that the ratio of the outward velocities of successive rings approximately equals the ratio of ring sizes. Ring velocities are also shown to scale simply with local circular velocities in this limit. [source]


Hiding cusps in cores: kinematics of disc galaxies in triaxial dark matter haloes

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2006
Eric Hayashi
ABSTRACT We study the kinematics of gaseous discs in triaxial dark matter haloes using the closed-loop orbit solutions in non-axisymmetric potentials. The orbits are in general non-circular and, for a given triaxiality, their ellipticity depends on the ratio of escape to circular velocities, V2esc/V2c. This ratio increases steeply towards the centre for cold dark matter (CDM) halo density profiles, implying that even minor deviations from spherical symmetry may induce large deviations from circular orbits in the velocity field of a gaseous disc, especially near the centre. This result suggests that caution should be exercised when interpreting constraints on the presence of density cusps in the dark halo derived from the innermost velocity profile. Simulated long-slit rotation curves vary greatly in shape, depending primarily on the viewing angle of the disc and on its orientation relative to the principal axes of the potential. ,Solid-body' rotation curves , typically interpreted as a signature of a constant density core in the dark matter distribution , are often obtained when the slit samples velocities near the major axis of the closed-loop orbits. Triaxial potentials imprint specific symmetries in 2D velocity fields, generally inducing ,twists' in the isovelocity contours and antisymmetric patterns in opposite quadrants. We suggest that triaxial haloes may be responsible for the variety of shapes of long-slit rotation curves of low surface brightness (LSB) galaxies, as well as for the complex central kinematics of LSBs, which are sometimes ascribed to the presence of ,radial motions' in the gas. We argue that LSB rotation curves might be reconciled with the structure of CDM haloes once the effects of halo triaxiality on the dynamics of gaseous discs are properly taken into account. [source]


An infinite family of generalized Kalnajs discs

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
Guillermo A. González
ABSTRACT An infinite family of axially symmetric thin discs of finite radius is presented. The family of discs is obtained by means of a method developed by Hunter and contains, as its first member, the Kalnajs disc. The surface densities of the discs present a maximum at the centre of the disc and then decrease smoothly to zero at the edge, in such a way that the mass distribution of the higher members of the family is more concentrated at the centre. The first member of the family has a circular velocity proportional to the radius, thus representing a uniformly rotating disc. On the other hand, the circular velocities of the other members of the family increase from a value of zero at the centre of the discs to a maximum and then decrease smoothly to a finite value at the edge of the discs, in such a way that, for the higher members of the family, the maximum value of the circular velocity is attained nearest the centre of the discs. [source]


Structure and dynamics of galaxies with a low surface-brightness disc , I. The stellar and ionized-gas kinematics

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2008
A. Pizzella
ABSTRACT Photometry and long-slit spectroscopy are presented for a sample of six galaxies with a low surface-brightness stellar disc and a bulge. The characterizing parameters of the bulge and disc components were derived by means of a two-dimensional photometric decomposition of the images of the sample galaxies. Their surface-brightness distribution was assumed to be the sum of the contribution of a Sérsic bulge and an exponential disc, with each component being described by elliptical and concentric isophotes of constant ellipticity and position angle. The stellar and ionized-gas kinematics were measured along the major and minor axes in half of the sample galaxies, whereas the other half was observed only along two diagonal axes. Spectra along two diagonal axes were obtained also for one of the objects with major and minor axis spectra. The kinematic measurements extend in the disc region out to a surface-brightness level ,R, 24 mag arcsec,2, reaching in all cases the flat part of the rotation curve. The stellar kinematics turns out to be more regular and symmetric than the ionized-gas kinematics, which often shows the presence of non-circular, off-plane and non-ordered motions. This raises the question about the reliability of the use of the ionized gas as the tracer of the circular velocity in the modelling of the mass distribution, in particular in the central regions of low surface-brightness galaxies. [source]


The link between the masses and central stellar populations of S0 galaxies

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2008
A. G. Bedregal
ABSTRACT Using high signal-to-noise ratio VLT/FORS2 long-slit spectroscopy, we have studied the properties of the central stellar populations and dynamics of a sample of S0 galaxies in the Fornax cluster. The central absorption-line indices in these galaxies correlate well with the central velocity dispersions (,0) in accordance with what previous studies found for elliptical galaxies. However, contrary to what it is usually assumed for cluster ellipticals, the observed correlations seem to be driven by systematic age and ,-element abundance variations, and not changes in overall metallicity. We also found that the observed scatter in the index,,0 relations can be partially explained by the rotationally supported nature of these systems. Indeed, even tighter correlations exist between the line indices and the maximum circular velocity of the galaxies. This study suggests that the dynamical mass is the physical property driving these correlations, and for S0 galaxies such masses have to be estimated assuming a large degree of rotational support. The observed trends imply that the most massive S0s have the shortest star formation time-scales and the oldest stellar populations. [source]


An infinite family of generalized Kalnajs discs

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006
Guillermo A. González
ABSTRACT An infinite family of axially symmetric thin discs of finite radius is presented. The family of discs is obtained by means of a method developed by Hunter and contains, as its first member, the Kalnajs disc. The surface densities of the discs present a maximum at the centre of the disc and then decrease smoothly to zero at the edge, in such a way that the mass distribution of the higher members of the family is more concentrated at the centre. The first member of the family has a circular velocity proportional to the radius, thus representing a uniformly rotating disc. On the other hand, the circular velocities of the other members of the family increase from a value of zero at the centre of the discs to a maximum and then decrease smoothly to a finite value at the edge of the discs, in such a way that, for the higher members of the family, the maximum value of the circular velocity is attained nearest the centre of the discs. [source]


Magnetic jets from swirling discs

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2006
D. Lynden-Bell
ABSTRACT A broad swathe of astrophysical phenomena, ranging from tubular planetary nebulae through Herbig,Haro objects, radio galaxy and quasar emissions to gamma-ray bursts and perhaps high-energy cosmic rays, may be driven by magnetically dominated jets emanating from accretion discs. We give a self-contained account of the analytic theory of non-relativistic magnetically dominated jets wound up by a swirling disc and making a magnetic cavity in a background medium of any prescribed pressure, p(z). We solve the time-dependent problem for any specified distribution of magnetic flux P(R, 0) emerging from the disc at z= 0, with any specified disc angular velocity ,d(R). The physics required to do this involves only the freezing of the lines of force to the conducting medium and the principle of minimum energy. In a constant pressure environment, the magnetically dominated cavity is highly collimated and advances along the axis at a constant speed closely related to the maximum circular velocity of the accretion disc. Even within the cavity the field is strongly concentrated towards the axis. The twist in the jet field ,B,,/,|Bz|, is close to and the width of the jet decreases upwards. By contrast, when the background pressure falls off with height with powers approaching z,4, the head of the jet accelerates strongly and the twist of the jet is much smaller. The width increases to give an almost conical magnetic cavity with apex at the source. Such a regime may be responsible for some of the longest strongly collimated jets. When the background pressure falls off faster than z,4, there are no quasi-static configurations of well-twisted fields and the pressure confinement is replaced by a dynamic effective pressure or a relativistic expansion. In the regimes with rapid acceleration, the outgoing and incoming fields linking the twist back to the source are almost anti-parallel so there is a possibility that magnetic reconnections may break up the jet into a series of magnetic ,smoke-rings' travelling out along the axis. [source]


The Tully,Fisher relation and its implications for the halo density profile and self-interacting dark matter

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2000
H. J. Mo
We show that the Tully,Fisher relation observed for spiral galaxies can be explained in the current scenario of galaxy formation without invoking subtle assumptions, provided that galactic-sized dark haloes have low concentrations which do not change significantly with halo circular velocity. This conclusion does not depend significantly on whether haloes have cuspy or flat profiles in the inner region. In such a system, both the disc and the halo may contribute significantly to the maximum rotation of the disc, and the gravitational interaction between the disc and halo components leads to a tight relation between the disc mass and maximum rotation velocity. The model can therefore be tested by studying the Tully,Fisher zero points for galaxies with different disc mass-to-light ratios. With model parameters (such as the ratio between disc and halo mass, the specific angular momentum of disc material, disc formation time) chosen in plausible ranges, the model can well accommodate the zero-point, slope and scatter of the observed Tully,Fisher relation, as well as the observed large range of disc surface densities and sizes. In particular, the model predicts that low surface brightness disc galaxies obey a Tully,Fisher relation very similar to that of normal discs, if the disc mass-to-light ratio is properly taken into account. About half of the gravitational force at maximum rotation comes from the disc component for normal discs, while the disc contribution is lower for galaxies with a lower surface density. The halo profile required by the Tully,Fisher relation is as concentrated as that required by the observed rotation curves of faint discs, but less concentrated than that given by current simulations of cold dark matter (CDM) models. We discuss the implication of such profiles for structure formation in the Universe and for the properties of dark matter. Our results cannot be explained by some of the recent proposals for resolving the conflict between conventional CDM models and the observed rotation-curve shapes of faint galaxies. If dark matter self-interaction (either scattering or annihilation) is responsible for the shallow profile, the observed Tully,Fisher relation requires the interaction cross-section ,X to satisfy ,,X|v|,/mX,10,16 cm3 s,1 GeV,1, where mX is the mass of a dark matter particle. [source]


Local group dwarf galaxies in the ,CDM paradigm

ASTRONOMISCHE NACHRICHTEN, Issue 9-10 2008
J. Peñarrubia
Abstract We report the results of two theoretical studies that examine the dynamics of stellar systems embedded within cold dark matter (CDM) halos in order to assess observational constraints on the dark matter content of Local Group dwarf spheroidals (dSphs). (i) Firstly, approximating the stellar and dark components by King and NFW models, respectively, we calculate the parameters of dark halos consistent with the kinematics and spatial distribution of stars in dSphs as well as with cosmological N-body simulations. (ii) Subsequently, N-body realization of these models are constructed to study the evolution of dwarf spheroidal galaxies (dSphs) driven by galactic tides. The analytical estimates highlight the poor correspondence between luminosity and halo mass. In systems where data exist, the stellar velocity dispersion profiles remains flat almost to the nominal "tidal" radius, implying that stars are deeply embedded within the dwarf halos and are therefore quite resilient to tidal disruption. This is confirmed by our N-body experiments: halos need to lose more than 90% of their original mass before stars can be stripped. As tidal mass loss proceeds, the stellar luminosity, L, velocity dispersion, ,0, central surface brightness, ,0, and core radius, Rc, decrease monotonically. Remarkably, the evolution of these parameters is solely controlled by the total amount of mass lost from within the luminous radius, which permit us to derive a tidal evolutionary track for each of them. This information is used to examine whether the newly-discovered ultra-faintMilkyWay dwarfs are tidally-stripped versions of the "classical", bright dwarfs. Although dSph tidal evolutionary tracks parallel the observed scaling relations in the luminosity-radius plane, they predict too steep a change in velocity dispersion compared with the observational estimates. The ultra-faint dwarfs are thus unlikely to be the tidal remnants of systems like Fornax, Draco, or Sagittarius. Despite spanning four decades in luminosity, dSphs appear to inhabit halos of comparable peak circular velocity, lending support to scenarios that envision dwarf spheroidals as able to form only in halos above a certain mass threshold. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]