Circadian Pacemaker (circadian + pacemaker)

Distribution by Scientific Domains


Selected Abstracts


Lesion studies targeting food-anticipatory activity

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2009
Alec J. Davidson
Abstract Behavior ablation remains a powerful, if not cutting-edge, approach for localization of function within the nervous system. The initial discovery of the suprachiasmatic nuclei as the site of the mammalian light-entrainable circadian pacemaker is owed to this approach. Food-anticipatory activity (FAA), an output of a putative feeding-entrainable circadian pacemaker, is a behavior that has been surprisingly resilient to elimination by surgical lesion. Here we review this literature, with particular attention paid to recent studies aimed at defining the role of the dorsomedial hypothalamus in the generation of FAA. This literature is fraught with examples of inconsistent results among lesion studies, which in some cases can be accounted for by varied endpoint measures. The site of the feeding-entrainable circadian pacemaker, if it resides in a discrete structure at all, remains unknown. [source]


Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain?

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2007
Clare Guilding
Abstract The suprachiasmatic nucleus of the hypothalamus (SCN) is the master circadian pacemaker or clock in the mammalian brain. Canonical theory holds that the output from this single, dominant clock is responsible for driving most daily rhythms in physiology and behaviour. However, important recent findings challenge this uniclock model and reveal clock-like activities in many neural and non-neural tissues. Thus, in addition to the SCN, a number of areas of the mammalian brain including the olfactory bulb, amygdala, lateral habenula and a variety of nuclei in the hypothalamus, express circadian rhythms in core clock gene expression, hormone output and electrical activity. This review examines the evidence for extra-SCN circadian oscillators in the mammalian brain and highlights some of the essential properties and key differences between brain oscillators. The demonstration of neural pacemakers outside the SCN has wide-ranging implications for models of the circadian system at a whole-organism level. [source]


Blockade of the NPY Y5 receptor potentiates circadian responses to light: complementary in vivo and in vitro studies

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2004
P. C. Yannielli
Abstract Neuropeptide Y (NPY) is delivered to the suprachiasmatic nuclei (SCN) circadian pacemaker via an input from the thalamic intergeniculate leaflet. NPY can inhibit light-induced responses of the circadian system of Syrian hamsters. Here we studied whether an antagonist to NPY receptors can be used to potentiate photic phase shifts late in the subjective night. First we determined by in situ hybridization that both NPY Y1 and Y5 receptor mRNA are expressed in the SCN of Syrian hamsters. Second, similar to our previous findings at Zeitgeber time 14 (ZT 14, where ZT 12 was the time of lights off), we found that NPY applied at ZT 18.5 onto the SCN region of brain slices maintained in vitro could block NMDA-induced phase advances of the spontaneous firing rate rhythm, and this blocking effect was probably mediated by the Y5 receptor, since co-application of Y5 receptor antagonists completely reversed the effect of NPY, while application of a Y1 receptor antagonist had no effect under the same conditions. Third, we found that co-treatment with a Y5 receptor antagonist in vivo (s.c., 10 mg/kg) not only reversed the effect of NPY applied to the SCN in vivo through a cannula but also significantly potentiated the light-induced phase advance in the absence of NPY. This is the first report of a NPY receptor antagonist having such an effect, and indicates that NPY Y5 receptor antagonists could be clinically useful for potentiating circadian system responses to light. [source]


Ageing and the Diurnal Expression of the mRNAs for Vasopressin and for the V1a and V1b Vasopressin Receptors in the Suprachiasmatic Nucleus of Male Rats

JOURNAL OF NEUROENDOCRINOLOGY, Issue 6 2004
T. Kalamatianos
Abstract Changes in the function of neuropeptide synthesizing cells within the suprachiasmatic nucleus (SCN), the site of the predominant circadian pacemaker, may underlie the disturbance of rhythms observed during ageing. Arginine vasopressin (AVP) is synthesized by nearly one-third of SCN neurones in the rat. This peptide has predominantly excitatory actions within the SCN mediated by V1 -type receptors; the extent to which the V1a and/or V1b receptor subtypes are involved in SCN functions remains to be determined. The present study used isotopic in situ hybridization histochemistry to examine the effects of ageing on expression of mRNAs for AVP and V1a in the SCN and for V1b in the SCN and supraoptic nucleus (SON) of male rats kept under a 12 : 12 h light/dark cycle. Analysis of film autoradiographs from young adult (2,3-month-old; n = 40) or aged (19,20-month-old; n = 40) animals, at eight time points across the light/dark cycle, revealed an equivalent pattern and amplitude for the diurnal rhythm of AVP mRNA in the SCN of the young adult and aged groups. Both groups also displayed a significant diurnal rhythm in the expression of V1a receptor mRNA; however, the amplitude of this rhythm was reduced in the aged group, due to increased levels during the light phase and early part of night. Although the expression of V1b mRNA did not display a significant diurnal rhythm within the SCN or SON, persistently elevated levels for V1b mRNA were observed in the aged group at both sites. [source]


Melatonin advances the circadian timing of EEG sleep and directly facilitates sleep without altering its duration in extended sleep opportunities in humans

THE JOURNAL OF PHYSIOLOGY, Issue 1 2004
Shantha M. W. Rajaratnam
The rhythm of plasma melatonin originating from the pineal gland and driven by the circadian pacemaker located in the suprachiasmatic nucleus is closely associated with the circadian (approximately 24 h) variation in sleep propensity and sleep spindle activity in humans. We investigated the contribution of melatonin to variation in sleep propensity, structure, duration and EEG activity in a protocol in which sleep was scheduled to begin during the biological day, i.e. when endogenous melatonin concentrations are low. The two 14 day trials were conducted in an environmental scheduling facility. Each trial included two circadian phase assessments, baseline sleep and nine 16 h sleep opportunities (16.00,08.00 h) in near darkness. Eight healthy male volunteers (24.4 ± 4.4 years) without sleep complaints were recruited, and melatonin (1.5 mg) or placebo was administered at the start of the first eight 16 h sleep opportunities. During melatonin treatment, sleep in the first 8 h of the 16 h sleep opportunities was increased by 2 h. Sleep per 16 h was not significantly different and approached asymptotic values of 8.7 h in both conditions. The percentage of rapid eye movement (REM) sleep was not affected by melatonin, but the percentage of stage 2 sleep and sleep spindle activity increased, and the percentage of stage 3 sleep decreased. During the washout night, the melatonin-induced advance in sleep timing persisted, but was smaller than on the preceding treatment night and was consistent with the advance in the endogenous melatonin rhythm. These data demonstrate robust, direct sleep-facilitating and circadian effects of melatonin without concomitant changes in sleep duration, and support the use of melatonin in the treatment of sleep disorders in which the circadian melatonin rhythm is delayed relative to desired sleep time. [source]


Implementation of pigment-dispersing factor-immunoreactive neurons in a standardized atlas of the brain of the cockroach Leucophaea maderae

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 20 2010
Hongying Wei
Abstract The cockroach Leucophaea maderae is an established model in circadian rhythm research. Its circadian clock is located in the accessory medulla of the brain. Pigment-dispersing factor-immunoreactive (PDF-ir) neurons of the accessory medulla act as circadian pacemakers controlling locomotor activity rhythms. To characterize the neuronal network of the circadian system in L. maderae, the PDF-ir neurons were implemented into a standardized three-dimensional atlas of the cockroach brain. Serial confocal images from 20 wholemount brains were used for the construction of the atlas comprising 21 neuropils. Two different standardization protocols were employed: the iterative shape averaging (ISA) procedure using an affine transformation followed by iterative non-rigid registrations, and the virtual insect brain (VIB) protocol employing local non-rigid transformations after global and local rigid transformations. Quantitative analysis of the 20 brains revealed that volumes of the accessory medulla are directly correlated with the volumes of the medulla, the protocerebral bridge, and the upper division of the central body, suggesting functional connections among these neuropils. For a standardized reconstruction of the circadian pacemaker network, the ISA protocol was used to register PDF-ir neurons in the standard cockroach brain. The registration revealed that two PDF-ir arborization areas in the brain are highly interconnected with other PDF-ir projection sites and appear to be contacted both by fibers in the posterior and the anterior optic commissures. The distances between PDF-ir branching areas show specific numerical relationships that might be physiologically relevant for temporal encoding. J. Comp. Neurol. 518:4113,4133, 2010. © 2010 Wiley-Liss, Inc. [source]


Mathematical modeling of the circadian rhythm of key neuroendocrine,immune system players in rheumatoid arthritis: A systems biology approach

ARTHRITIS & RHEUMATISM, Issue 9 2009
Michael Meyer-Hermann
Objective Healthy subjects and patients with rheumatoid arthritis (RA) exhibit circadian rhythms of the neuroendocrine,immune system. Understanding circadian dynamics is complex due to the nonlinear behavior of the neuroendocrine,immune network. This study was undertaken to seek and test a mathematical model for studying this network. Methods We established a quantitative computational model to simulate nonlinear interactions between key factors in the neuroendocrine,immune system, such as plasma tumor necrosis factor (TNF), plasma cortisol (and adrenal cholesterol store), and plasma noradrenaline (NA) (and presynaptic NA store). Results The model was nicely fitted with measured reference data on healthy subjects and RA patients. Although the individual circadian pacemakers of cortisol, NA, and TNF were installed without a phase shift, the relative phase shift between these factors evolved as a consequence of the modeled network interactions. Combined long-term and short-term TNF increase (the "RA model") increased cortisol plasma levels for only a few days, and cholesterol stores started to become markedly depleted. This nicely demonstrated the phenomenon of inadequate cortisol secretion relative to plasma TNF levels, as a consequence of adrenal deficiency. Using the RA model, treatment with glucocorticoids between midnight and 2:00 AM was found to have the strongest inhibitory effect on TNF secretion, which supports recent studies on RA therapy. Long-term reduction of TNF levels by simulation of anti-TNF therapy normalized cholesterol stores under "RA" conditions. Conclusion These first in silico studies of the neuroendocrine,immune system in rheumatology demonstrate that computational biology in medicine, making use of large collections of experimental data, supports understanding of the pathophysiology of complex nonlinear systems. [source]