Cingulate Gyrus (cingulate + gyrus)

Distribution by Scientific Domains

Kinds of Cingulate Gyrus

  • anterior cingulate gyrus


  • Selected Abstracts


    Cerebral blood flow in patients with diffuse axonal injury , examination of the easy Z -score imaging system utility

    EUROPEAN JOURNAL OF NEUROLOGY, Issue 5 2007
    T. Okamoto
    To evaluate the utility of easy Z -score imaging system (eZIS) in 27 diffuse axonal injury (DAI) cases. Twenty-seven DAI patients were examined with an magnetic resonance imaging (MRI) T2* sequence and with eZIS (seven women, 20 men; age range, 19,35 years; median age: 26.6 years). In this investigation, we excluded patients who exhibited complications such as acute subdural hematoma, acute epidural hematoma, intracerebral hematoma, or brain contusion. We examined the neuropsychological tests and correlated with findings from MRI/eZIS. Furthermore, we evaluated the degree of ventricular enlargement in the bifrontal cerebroventricular index (CVI). Patients were divided into two groups: the enlargement group (bifrontal CVI > 35%, 12 patients) and the non-enlargement group (bifrontal CVI < 35%, 15 patients). All of the patients showed cognitive deficits as observed from the neuropsycological test results. Fifteen out of 27 patients by MRI T1/T2 weighted images and fluid attenuated inversion recovery (FLAIR), 22 out of 27 patients by MRI T2* weighted images and 24 out of 27 patients by eZIS showed abnormal findings. In MRI T2* weighted imaging, the white matter from the frontal lobe, corpus callosum, and brainstem showed abnormal findings. With eZIS, 22 patients (81.5%) showed blood flow degradation in the frontal lobe, and 12 patients (44.4%) in cingulate gyrus. In the enlargement group, Functional Independence Measure, Mini-Mental State Examination, Verbal IQ (VIQ)/Full Scale IQ (FIQ), Trail Making Test-B (TMT-B), and Non-paired of Miyake Paired Test were significantly lower. Amongst 12 patients without ventricular enlargement who had no abnormal findings in MRI T1/T2 weighted images and FLAIR, abnormal findings were detectable in seven patients with MRI T2* weighted imaging and to 10 patients with eZIS. Results of the MRI examination alone cannot fully explain DAI frontal lobe dysfunction. However, addition of the eZIS-assisted analysis derived from the single photon emission computed tomography (SPECT) data enabled us to understand regions where blood flow was decreased, i.e., where neuronal functions conceivably might be reduced. [source]


    Does the medial orbitofrontal cortex have a role in social valuation?

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2010
    M. P. Noonan
    Abstract It has been claimed that social behaviour changes after lesions of the ventromedial prefrontal cortex (vmPFC). However, lesions in humans are rarely restricted to a well defined cortical area. Although vmPFC lesions usually include medial orbitofrontal cortex (mOFC), they typically also affect subgenual and/or perigenual anterior cingulate cortex. The purpose of the current study is to investigate the role of mOFC in social valuation and decision-making. We tested four macaque monkeys prior to and after focal lesions of mOFC. Comparison of the animals' pre- and postoperative performance revealed that, unlike lesions of anterior cingulate gyrus (ACCg), lesions of mOFC did not induce alterations in social valuation. MOFC lesions did, however, induce mild impairments in a probabilistic two-choice decision task, which were not seen after ACCg lesions. In summary, the double dissociation between the patterns of impairment suggest that vmPFC involvement in both decision-making and social valuation may be mediated by distinct subregions centred on mOFC and ACCg respectively. [source]


    Neural activity related to the processing of increasing monetary reward in smokers and nonsmokers

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2003
    C. Martin-Soelch
    Abstract This study investigated the processing of increasing monetary reward in nonsmoking and smoking subjects. The choice of the subject populations has been motivated by the observation of differences between nonsmokers and smokers in response to rewarding stimuli in a previous study. Subjects performed a pattern recognition task with delayed response, while rCBF was measured with [\mathrm{H}^{15}_{2}O] PET. Correct responses to the task were reinforced with three different amounts of monetary reward. The subjects received the sum of the rewards at the end of the experiment. The results show that a cortico-subcortical loop, including the dorsolateral prefrontal cortex, the orbitofrontal cortex, the cingulate gyrus and the thalamus is involved in processing increasing monetary reward. Furthermore, the striatal response differentiates nonsmokers from smokers. Thus, we found significant correlations between rCBF increases in striatum and increasing monetary reward and between striatal rCBF increases and mood in nonsmokers, but not in smokers. Moreover, no significant mood changes among the different monetary rewards could be observed in smokers. We infer that the response of the striatum to reward is related to changes in subjective feelings. The differences between smokers and nonsmokers confirm our previous conclusions that the association between blood flow, performance, mood and amount of reward is more direct in nonsmokers. [source]


    Prefrontal and agranular cingulate projections to the dorsal premotor areas F2 and F7 in the macaque monkey

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2003
    Giuseppe Luppino
    Abstract The superior sector of Brodmann area 6 (dorsal premotor cortex, PMd) of the macaque monkey consists of a rostral and a caudal architectonic area referred to as F7 and F2, respectively. The aim of this study was to define the origin of prefrontal and agranular cingulate afferents to F7 and F2, in the light of functional and hodological evidence showing that these areas do not appear to be functionally homogeneous. Different sectors of F7 and F2 were injected with neural tracers in seven monkeys and the retrograde labelling was qualitatively and quantitatively analysed. The dorsorostral part of F7 (supplementary eye field, F7-SEF) was found to be a target of strong afferents from the frontal eye field (FEF), from the dorsolateral prefrontal regions located dorsally (DLPFd) and ventrally (DLPFv) to the principal sulcus and from cingulate areas 24a, 24b and 24c. In contrast, the remaining part of F7 (F7-non SEF) is only a target of the strong afferents from DLPFd. Finally, the ventrorostral part of F2 (F2vr), but not the F2 sector located around the superior precentral dimple (F2d), receives a minor, but significant, input from DLPFd and a relatively strong input from the cingulate gyrus (areas 24a and 24b) and area 24d. Present data provide strong hodological support in favour of the idea that areas F7 and F2 are formed by two functionally distinct sectors. [source]


    Brain structure and obesity

    HUMAN BRAIN MAPPING, Issue 3 2010
    Cyrus A. Raji
    Abstract Obesity is associated with increased risk for cardiovascular health problems including diabetes, hypertension, and stroke. These cardiovascular afflictions increase risk for cognitive decline and dementia, but it is unknown whether these factors, specifically obesity and Type II diabetes, are associated with specific patterns of brain atrophy. We used tensor-based morphometry (TBM) to examine gray matter (GM) and white matter (WM) volume differences in 94 elderly subjects who remained cognitively normal for at least 5 years after their scan. Bivariate analyses with corrections for multiple comparisons strongly linked body mass index (BMI), fasting plasma insulin (FPI) levels, and Type II Diabetes Mellitus (DM2) with atrophy in frontal, temporal, and subcortical brain regions. A multiple regression model, also correcting for multiple comparisons, revealed that BMI was still negatively correlated with brain atrophy (FDR <5%), while DM2 and FPI were no longer associated with any volume differences. In an Analysis of Covariance (ANCOVA) model controlling for age, gender, and race, obese subjects with a high BMI (BMI > 30) showed atrophy in the frontal lobes, anterior cingulate gyrus, hippocampus, and thalamus compared with individuals with a normal BMI (18.5,25). Overweight subjects (BMI: 25,30) had atrophy in the basal ganglia and corona radiata of the WM. Overall brain volume did not differ between overweight and obese persons. Higher BMI was associated with lower brain volumes in overweight and obese elderly subjects. Obesity is therefore associated with detectable brain volume deficits in cognitively normal elderly subjects. Hum Brain Mapp, 2010. © 2009 Wiley-Liss, Inc. [source]


    A multiparametric evaluation of regional brain damage in patients with primary progressive multiple sclerosis

    HUMAN BRAIN MAPPING, Issue 9 2009
    Antonia Ceccarelli
    Abstract The purpose of this study is to define the topographical distribution of gray matter (GM) and white matter (WM) damage in patients with primary progressive multiple sclerosis (PPMS), using a multiparametric MR-based approach. Using a 3 Tesla scanner, dual-echo, 3D fast-field echo (FFE), and diffusion tensor (DT) MRI scans were acquired from 18 PPMS patients and 17 matched healthy volunteers. An optimized voxel-based (VB) analysis was used to investigate the patterns of regional GM density changes and to quantify GM and WM diffusivity alterations of the entire brain. In PPMS patients, GM atrophy was found in the thalami and the right insula, while mean diffusivity (MD) changes involved several cortical-subcortical structures in all cerebral lobes and the cerebellum. An overlap between decreased WM fractional anisotropy (FA) and increased WM MD was found in the corpus callosum, the cingulate gyrus, the left short temporal fibers, the right short frontal fibers, the optic radiations, and the middle cerebellar peduncles. Selective MD increase, not associated with FA decrease, was found in the internal capsules, the corticospinal tracts, the superior longitudinal fasciculi, the fronto-occipital fasciculi, and the right cerebral peduncle. A discrepancy was found between regional WM diffusivity changes and focal lesions because several areas had DT MRI abnormalities but did not harbor T2-visible lesions. Our study allowed to detect tissue damage in brain areas associated with motor and cognitive functions, which are known to be impaired in PPMS patients. Combining regional measures derived from different MR modalities may be a valuable tool to improve our understanding of PPMS pathophysiology. Hum Brain Mapp 2009. © 2009 Wiley-Liss, Inc. [source]


    Parsing brain activity associated with acupuncture treatment in Parkinson's diseases,

    MOVEMENT DISORDERS, Issue 12 2009
    Younbyoung Chae KMD
    Abstract Acupuncture, a common treatment modality within complementary and alternative medicine, has been widely used for Parkinson's disease (PD). Using functional magnetic resonance imaging (fMRI), we explored the neural mechanisms underlying the effect of specific and genuine acupuncture treatment on the motor function in patients with PD. Three fMRI scans were performed in random order in a block design, one for verum acupuncture (VA) treatment, another one for a covert placebo (CP), and the third one for an overt placebo (OP) at the motor function implicated acupoint GB34 on the left foot of 10 patients with PD. We calculated the contrast that subtracts the blood-oxygen-level dependent (BOLD) response for the acupuncture effect (VA vs. CP) and the placebo effect (CP vs. OP). We found a significant improvement in the motor function of the affected hand after acupuncture treatment. The putamen and the primary motor cortex were activated when patients with PD received the acupuncture treatment (VA vs. CP) and these activations correlated with individual enhanced motor function. Expectation towards acupuncture modality (CP vs. OP) elicited activation over the anterior cingulate gyrus, the superior frontal gyrus, and the superior temporal gyrus. These findings suggest that acupuncture treatment might facilitate improvement in the motor functioning of patients with PD via the basal ganglia-thalamocortical circuit. © 2009 Movement Disorder Society [source]


    Effects of psychological stress on the cerebral processing of visceral stimuli in healthy women

    NEUROGASTROENTEROLOGY & MOTILITY, Issue 7 2009
    C. Rosenberger
    Abstract, The aim of the study was to analyse effects of psychological stress on the neural processing of visceral stimuli in healthy women. The brain functional magnetic resonance imaging blood oxygen level-dependent response to non-painful and painful rectal distensions was recorded from 14 healthy women during acute psychological stress and a control condition. Acute stress was induced with a modified public speaking stress paradigm. State anxiety was assessed with the State-Trait-Anxiety Inventory; chronic stress was measured with the Perceived Stress Questionnaire. During non-painful distensions, activation was observed in the right posterior insular cortex (IC) and right S1. Painful stimuli revealed activation of the bilateral anterior IC, right S1, and right pregenual anterior cingulate cortex. Chronic stress score was correlated with activation of the bilateral amygdala, right posterior IC (post-IC), left periaqueductal grey (PAG), and right dorsal posterior cingulate gyrus (dPCC) during non-painful stimulation, and with activation of the right post-IC, right PAG, left thalamus (THA), and right dPCC during painful distensions. During acute stress, state anxiety was significantly higher and the acute stress , control contrast revealed activation of the right dPCC, left THA and right S1 during painful stimulation. This is the first study to demonstrate effects of acute stress on cerebral activation patterns during visceral pain in healthy women. Together with our finding that chronic stress was correlated wit the neural response to visceral stimuli, these results provide a framework for further studies addressing the role of chronic stress and emotional disturbances in the pathophysiology of visceral hyperalgesia. [source]


    Bladder control, urgency, and urge incontinence: Evidence from functional brain imaging,

    NEUROUROLOGY AND URODYNAMICS, Issue 6 2008
    Derek Griffiths
    Abstract Aim To review brain imaging studies of bladder control in subjects with normal control and urge incontinence; to define a simple model of supraspinal bladder control; and to propose a neural correlate of urgency and possible origins of urge incontinence. Methods Review of published reports of brain imaging relevant to urine storage, and secondary analyses of our own recent observations. Results In a simple model of normal urine storage, bladder and urethral afferents received in the periaqueductal gray (PAG) are mapped in the insula, forming the basis of sensation; the anterior cingulate gyrus (ACG) provides monitoring and control; the prefrontal cortex makes voiding decisions. The net result, as the bladder fills, is inhibition of the pontine micturition center (PMC) and of voiding, together with gradual increase in insular response, corresponding to increasing desire to void. In urge-incontinent subjects, brain responses differ. At large bladder volumes and strong sensation, but without detrusor overactivity (DO), most cortical responses become exaggerated, especially in ACG. This may be both a learned reaction to previous incontinence episodes and the neural correlate of urgency. The neural signature of DO itself seems to be prefrontal deactivation. Possible causes of urge incontinence include dysfunction of prefrontal cortex or limbic system, suggested by weak responses and/or deactivation, as well as abnormal afferent signals or re-emergence of infantile reflexes. Conclusions Bladder control depends on an extensive network of brain regions. Dysfunction in various parts may contribute to urge incontinence, suggesting that there are different phenotypes requiring different treatments. Neurourol. Urodynam. 27:466,474, 2008. © 2007 Wiley-Liss, Inc. [source]


    Reduced activation in lateral prefrontal cortex and anterior cingulate during attention and cognitive control functions in medication-naïve adolescents with depression compared to controls

    THE JOURNAL OF CHILD PSYCHOLOGY AND PSYCHIATRY AND ALLIED DISCIPLINES, Issue 3 2009
    Rozmin Halari
    Background:, There is increasing recognition of major depressive disorder (MDD) in adolescence. In adult MDD, abnormalities of fronto-striatal and fronto-cingulate circuitries mediating cognitive control functions have been implicated in the pathogenesis and been related to problems with controlling negative thoughts. No neuroimaging studies of cognitive control functions, however, exist in paediatric depression. This study investigated whether medication-naïve adolescents with MDD show abnormal brain activation of fronto-striatal and fronto-cingulate networks when performing tasks of attentional and cognitive control. Methods:, Event-related functional magnetic resonance imaging was used to compare brain activation between 21 medication-naïve adolescents with a first-episode of MDD aged 14,17 years and 21 healthy adolescents, matched for handedness, age, sex, demographics and IQ. Activation paradigms were tasks of selective attention (Simon task), attentional switching (Switch task), and motor response inhibition and error detection (Stop task). Results:, In all three tasks, adolescents with depression compared to healthy controls demonstrated reduced activation in task-relevant right dorsolateral (DLPFC), inferior prefrontal cortex (IFC) and anterior cingulate gyrus (ACG). Additional areas of relatively reduced activation were in the parietal lobes during the Stop and Switch tasks, putamen, insula and temporal lobes during the Switch task and precuneus during the Simon task. Conclusions:, This study shows first evidence that medication-naïve adolescents with MDD are characterised by abnormal function in ACG and right lateral prefrontal cortex during tasks of attention and performance monitoring, suggesting an early pathogenesis of these functional abnormalities attributed to MDD. [source]


    Extrastriatal dopaminergic dysfunction in tourette syndrome

    ANNALS OF NEUROLOGY, Issue 2 2010
    Thomas D. L. Steeves MD
    Objective Tourette syndrome (TS) is a neuropsychiatric disorder presenting with tics and a constellation of nonmotor symptoms that includes attention deficit hyperactivity disorder, obsessive,compulsive disorder, and impulse control disorders. Accumulated evidence from pharmacological trials and postmortem analyses suggests that abnormalities of dopaminergic neurotransmission play a key role in the pathogenesis of TS. A substantial body of evidence has also accrued to implicate regions outside the striatum in the generation of tics. Methods We initiated an [11C]FLB 457 positron emission tomography study in conjunction with an amphetamine challenge to evaluate extrastriatal dopamine (DA) D2/D3 receptor binding and DA release in a group of treatment-naive, adult TS patients compared with a group of age- and sex-matched controls. Results At baseline, TS patients showed decreased [11C]FLB 457 binding potentials bilaterally in cortical and subcortical regions outside the striatum, including the cingulate gyrus, middle and superior temporal gyrus, occipital cortex, insula, and thalamus. Amphetamine challenge induced DA release in both control and TS subjects bilaterally in many cortical regions; however, in TS patients, regions of increased DA release were significantly more widespread and extended more anteriorly to involve anterior cingulate and medial frontal gyri. Conversely, and in contrast to healthy controls, no significant DA release was noted in the thalami of TS patients. Interpretation These abnormalities of dopaminergic function localize to brain regions previously implicated in TS and suggest a mechanism for the hyperexcitability of thalamocortical circuits that has been documented in the disorder. ANN NEUROL 2010;67:170,181 [source]


    Clinical-neuroimaging characteristics of dysexecutive mild cognitive impairment,

    ANNALS OF NEUROLOGY, Issue 4 2009
    Judy Pa PhD
    Objective Subgroups of mild cognitive impairment (MCI) have been proposed, but few studies have investigated the nonamnestic, single-domain subgroup of MCI. The goal of the study was to compare clinical and neuroimaging characteristics of two single-domain MCI subgroups: amnestic MCI and dysexecutive MCI. Methods We compared the cognitive, functional, behavioral, and brain imaging characteristics of patients with amnestic MCI (n = 26), patients with dysexecutive MCI (n = 32), and age- and education-matched control subjects (n = 36) using analysis of variance and ,2 tests. We used voxel-based morphometry to examine group differences in brain magnetic resonance imaging atrophy patterns. Results Patients with dysexecutive MCI had significantly lower scores on the majority of executive function tests, increased behavioral symptoms, and left prefrontal cortex atrophy on magnetic resonance imaging when compared with control subjects. In contrast, patients with amnestic MCI had significantly lower scores on tests of memory and a pattern of atrophy including bilateral hippocampi and entorhinal cortex, right inferior parietal cortex, and posterior cingulate gyrus when compared with control subjects. Interpretation Overall, the clinical and neuroimaging findings provide support for two distinct single-domain subgroups of MCI, one involving executive function and the other involving memory. The brain imaging differences suggest that the two MCI subgroups have distinct patterns of brain atrophy. Ann Neurol 2009;65:414,423 [source]