Chum Salmon (chum + salmon)

Distribution by Scientific Domains


Selected Abstracts


Effect of Water Phase Salt Content and Storage Temperature on Listeria monocytogenes Survival in Chum Salmon (Oncorhynchus keta) Roe and Caviar (Ikura)

JOURNAL OF FOOD SCIENCE, Issue 5 2007
Joong-Han Shin
ABSTRACT:, Salmon caviar, or ikura, is a ready-to-eat food prepared by curing the salmon roe in a brine solution. Other seasonings or flavorants may be added, depending upon the characteristics of the product desired. Listeria monocytogenes growth is a potential risk, since it can grow at high salt concentrations (>10%) and in some products at temperatures as low as 3 °C. Ikura was prepared from chum salmon (Oncorhynchus keta) roe by adding food-grade NaCl to yield water phase salt contents (WPS) of 0.22% (no added salt), 2.39%± 0.18%, 3.50%± 0.19%, and 4.36%± 0.36%. A cocktail containing L. monocytogenes (ATCC 19114, 7644, 19113) was incorporated into the ikura at 2 inoculum levels (log 2.4 and 4.2 CFU/g), and stored at 3 or 7 °C for up to 30 d. L. monocytogenes was recovered by plating onto modified Oxford media. Aerobic microflora were analyzed on plate count agar. Samples were tested at 0, 5, 10, 20, and 30 d. L. monocytogenes did not grow in chum salmon ikura held at 3 °C during 30 d at any salt level tested; however, the addition of salt at these levels did little to inhibit Listeria growth at 7 °C and counts reached 5 to 6 logs CFU/g. Components in the salmon egg intracellular fluid appear to inhibit the growth of L. monocytogenes. Total aerobic microflora levels were slightly lower in products with higher salt contents. These results indicate that temperature control is critical for ikura and similar products, but that products with lower salt contents can be safe, as long as good refrigeration is maintained. [source]


Protective effect of a marine oligopeptide preparation from Chum Salmon (Oncorhynchus keta) on radiation-induced immune suppression in mice

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 13 2010
Ruiyue Yang
Abstract BACKGROUND: A marine oligopeptide preparation (MOP) obtained from Chum Salmon (Oncorhynchus keta) by the method of enzymatic hydrolysis, has been found to enhance the innate and adaptive immunities through stimulation of the secretion of cytokines in mice. The current study aimed to further investigate the protective effect of MOP on radiation-induced immune suppression in mice. RESULTS: Female ICR mice (6,8 weeks old) were randomly divided into three groups, i.e. blank control, irradiation control and MOP (1.350 g kg,1 body weight) plus irradiation-treated group. MOP significantly increased the survival rate and prolonged the survival times for 30 days after irradiation, and lessened the radiation-induced suppression of T- or B-lymphocyte proliferation, resulting in the recovery of cell-mediated and humoral immune functions. This effect may be produced by augmentation of the relative numbers of radioresistant CD4+ T cells, enhancement of the level of immunostimulatory cytokine, IL-12, reduction of the level of total cellular NF-,B through the induction of I,B in spleen and inhibition of the apoptosis of splenocytes. CONCLUSION: We propose that MOP be used as an ideal adjuvant therapy to alleviate radiation-induced injuries in cancer patients. Copyright © 2010 Society of Chemical Industry [source]


Population stability in salmon species: effects of population size and female reproductive allocation

JOURNAL OF ANIMAL ECOLOGY, Issue 5 2003
Sigurd Einum
Summary 1Population stability (i.e. level of temporal variation in population abundance) is linked commonly to levels of environmental disturbances. However, populations may also differ in their propensity to dampen or amplify the effects of exogenous forces. Here time-series of population estimates were used to test for such differences among 104 populations of six salmon species. 2At the species level, Atlantic (Salmo salar L.), chinook (Oncorhynchus tshawytscha Walbaum) and coho salmon (O. kisutch W) were less variable than sockeye (O. nerka W) and pink salmon (O. gorbuscha W). Chum salmon (O. keta W) was more similar to sockeye and pink salmon. These differences may be related in part to differences in body size, and hence susceptibility to adverse environmental conditions, at the time when they migrate to the sea or lakes. 3At the population level no effect of fecundity on variability was found, in contrast to findings for marine fishes, nor of egg size. Whereas substantial differences in the temporal stability of environmental factors among geographically close populations may over-ride any effects of fecundity or egg size in fresh water, this is less likely in the marine environment where spatial autocorrelations of environmental variability are more pronounced. 4Variation in population sizes was related positively to the duration of time-series when using standard deviations of ln-transformed population estimates, and also when using linearly detrended population variation, suggesting non-linear long-term abundance trends in salmon populations that extend beyond the 7-year period of the shortest time-series. 5When controlling for differences among species, stability increased with increasing population size, and it is hypothesized that this is due to large populations having a more complex spatial and genetic structure than small populations due to wider spatial distribution. The effects of population size on stability, as well as differences in stability among species, suggest that population- and organism-specific characteristics may interact with exogenous forces to shape salmon population dynamics. [source]


Elevation of gene expression for salmon gonadotropin-releasing hormone in discrete brain loci of prespawning chum salmon during upstream migration

DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2005
Takeshi Onuma
Abstract Our previous studies suggested that salmon gonadotropin-releasing hormone (sGnRH) neurons regulate both final maturation and migratory behavior in homing salmonids. Activation of sGnRH neurons can occur during upstream migration. We therefore examined expression of genes encoding the precursors of sGnRH, sGnRH-I, and sGnRH-II, in discrete forebrain loci of prespawning chum salmon, Oncorhynchus keta. Fish were captured from 1997 through 1999 along their homing pathway: coastal areas, a midway of the river, 4 km downstream of the natal hatchery, and the hatchery. Amounts of sGnRH mRNAs in fresh frozen sections including the olfactory bulb (OB), terminal nerve (TN), ventral telencephalon (VT), nucleus preopticus parvocellularis anterioris (PPa), and nucleus preopticus magnocellularis (PM) were determined by quantitative real-time polymerase chain reactions. The amounts of sGnRH-II mRNA were higher than those of sGnRH-I mRNA, while they showed similar changes during upstream migration. In the OB and TN, the amounts of sGnRH mRNAs elevated from the coast to the natal hatchery. In the VT and PPa, they elevated along with the progress of final maturation. Such elevation was also observed in the rostroventral, middle, and dorsocaudal parts of the PM. The amounts of gonadotropin II, and somatolactin mRNAs in the pituitary also increased consistently with the elevation of gene expression for sGnRH. These results, in combination with lines of previous evidence, indicate that sGnRH neurons are activated in almost all the forebrain loci during the last phases of spawning migration, resulting in coordination of final gonadal maturation and migratory behavior to the spawning ground. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005 [source]


An evaluation of the potential influence of SST and currents on the oceanic migration of juvenile and immature chum salmon (Oncorhynchus keta) by a simulation model

FISHERIES OCEANOGRAPHY, Issue 1 2004
Tomonori Azumaya
Abstract Using a salmon migration model based on the assumption that swimming orientation is temperature dependent, we investigated the determining factors of the migration of juvenile and immature chum salmon (Oncorhynchus keta) in the North Pacific. We compared the predictions of the model with catch data of immature and juvenile chum salmon collected by Japanese research vessels from 1972 to 1999. The salmon migration model reproduced the observed distributions of immature chum salmon and indicates that passive transport by wind-driven and geostrophic currents plays an important role in the eastward migration of Asian salmon. These factors result in a non-symmetric distribution of Asian and North American chum salmon in the open ocean. The directional swimming component contributes to the northward migration in summer. The model results indicate that during the first winter Asian chum salmon swim northward against the southward wind-driven currents to stay in the western North Pacific. This suggests that Asian chum salmon require more energy to migrate than other stocks during the first winter of their ocean life. [source]


Spatial correlation patterns in coastal environmental variables and survival rates of salmon in the north-east Pacific Ocean

FISHERIES OCEANOGRAPHY, Issue 4 2002
Franz J. Mueter
We examined spatial correlations for three coastal variables [upwelling index, sea surface temperature (SST), and sea surface salinity (SSS)] that might affect juvenile salmon (Oncorhynchus spp.) during their early marine life. Observed correlation patterns in environmental variables were compared with those in survival rates of pink (O. gorbuscha), chum (O. keta), and sockeye (O. nerka) salmon stocks to help identify appropriate variables to include in models of salmon productivity. Both the upwelling index and coastal SST were characterized by strong positive correlations at short distances, which declined slowly with distance in the winter months, but much more rapidly in the summer. The SSS had much weaker and more variable correlations at all distances throughout the year. The distance at which stations were no longer correlated (spatial decorrelation scale) was largest for the upwelling index (> 1000 km), intermediate for SST (400,800 km in summer), and shortest for SSS (< 400 km). Survival rate indices of salmon showed moderate positive correlations among adjacent stocks that decreased to zero at larger distances. Spatial decorrelation scales ranged from approximately 500 km for sockeye salmon to approximately 1000 km for chum salmon. We conclude that variability in the coastal marine environment during summer, as well as variability in salmon survival rates, are dominated by regional scale variability of several hundred to 1000 km. The correlation scale for SST in the summer most closely matched the observed correlation scales for survival rates of salmon, suggesting that regional-scale variations in coastal SST can help explain the observed regional-scale covariation in survival rates among salmon stocks. [source]


Effects of Pacific salmon spawning and carcass availability on the caddisfly Ecclisomyia conspersa (Trichoptera: Limnephilidae)

FRESHWATER BIOLOGY, Issue 7 2006
JASON K. WALTER
Summary 1. The effects of spawning coho (Oncorhynchus kisutch) and chum salmon (Oncorhynchus keta) on the limnephilid caddisfly Ecclisomyia conspersa were evaluated by experimentally excluding salmon from the upper 14-m stretch of a spawning channel by a wire-meshed fence. Density, and development and growth rates, of larvae upstream of the fence (without salmon) were compared with those downstream (with salmon). 2. Larval density in the stretch with salmon declined during spawning, but increased again after spawning subsided and the carcasses of dead fish became available. In the stretch with salmon, larval density on salmon carcasses was seven to 37 times greater than on the adjacent channel substratum. The rate of larval development in the stretch with salmon was greater than that in the stretch without salmon. Two months after carcasses became available, 98% of larvae sampled from the stretch with salmon were in the fifth instar, compared to only 23% from the stretch without salmon. Body weight of E. conspersa in the stretches with and without salmon increased by an average of 3.04 and 2.38 mg, respectively, over a 6-month period. 3. 15N values of larvae from the stretch with salmon increased following the arrival of the fish, suggesting that the larvae were feeding on salmon-derived material, such as eggs and carcasses, which contain a high proportion of the heavier stable isotope. In contrast, 15N values of larvae from the stretch without salmon remained relatively constant throughout the experiment. The availability of salmon carcasses as a high-quality food source late in larval development may increase survival and fecundity of E. conspersa. 4. These substantial differences were consistent with the view that they were due to the experimental exclusion of salmon and salmon carcasses from the upstream stretch, though the study was un-replicated and thus precludes ascribing causation more definitely. [source]


Functional response of juvenile pink and chum salmon: effects of consumer size and two types of zooplankton prey

JOURNAL OF FISH BIOLOGY, Issue 2 2007
J. H. Moss
Feeding rate experiments were conducted for pink salmon Oncorhynchus gorbuscha fry [mean fork length (LF) 39 mm], juveniles (103,104 mm LF) and juvenile chum salmon Oncorhynchus keta (106,107 mm LF). Fishes were presented with small copepod (Tisbi sp.) or larger mysid shrimp (Mysidopsis bahia) prey at varying densities ranging from 1 to 235 prey l,1 in feeding rate experiments conducted at water temperatures ranging from 10·5 to 12·0° C under high light levels and low turbidity conditions. Juvenile pink and chum salmon demonstrated a type II functional response to mysid and copepod prey. Mysid prey was readily selected by both species whereas the smaller bodied copepod prey was not. When offered copepods, pink salmon fry fed at a higher maximum consumption rate (2·5 copepods min,1) than larger juvenile pink salmon (0·4 copepods min,1), whereas larger juvenile chum salmon exhibited the highest feeding rate (3·8 copepods min,1). When feeding on mysids, the maximum feeding rate for larger juvenile pink (12·3 mysids min,1) and chum (11·5 mysids min,1) salmon were similar in magnitude, and higher than feeding rates on copepods. Functional response models parameterized for specific sizes of juvenile salmon and zooplankton prey provide an important tool for linking feeding rates to ambient foraging conditions in marine environments, and can enable mechanistic predictions for how feeding and growth should respond to spatial-temporal variability in biological and physical conditions during early marine life stages. [source]


Relative resistance of Pacific salmon to infectious salmon anaemia virus

JOURNAL OF FISH DISEASES, Issue 9 2003
J B Rolland
Abstract Infectious salmon anaemia (ISA) is a major disease of Atlantic salmon, Salmo salar, caused by an orthomyxovirus (ISAV). Increases in global aquaculture and the international movement of fish made it important to determine if Pacific salmon are at risk. Steelhead trout, Oncorhynchus mykiss, and chum, O. keta, Chinook, O. tshawytscha, coho, O. kisutch, and Atlantic salmon were injected intraperitoneally with a high, medium, or low dose of a Norwegian strain of ISAV. In a second challenge, the same species, except chum salmon, were injected with a high dose of either a Canadian or the Norwegian strain. Average cumulative mortality of Atlantic salmon in trial 1 was 12% in the high dose group, 20% in the medium dose group and 16% in the low dose group. The average cumulative mortality of Atlantic salmon in trial 2 was 98%. No signs typical of ISA and no ISAV-related mortality occurred among any of the groups of Oncorhynchus spp. in either experiment, although ISAV was reisolated from some fish sampled at intervals post-challenge. The results indicate that while Oncorhynchus spp. are quite resistant to ISAV relative to Atlantic salmon, the potential for ISAV to adapt to Oncorhynchus spp. should not be ignored. [source]


Development of a Method to Produce Freeze-Dried Cubes from 3 Pacific Salmon Species

JOURNAL OF FOOD SCIENCE, Issue 5 2010
Charles Crapo
Abstract:, Freeze-dried boneless skinless cubes of pink (Oncorhynchus gorbuscha), sockeye (Oncorhynchus nerka), and chum (Oncorhynchus keta),salmon were prepared and physical properties evaluated. To minimize freeze-drying time, the kinetics of dehydration and processing yields were investigated. The physical characteristics of the final product including bulk density, shrinkage, hardness, color, and rehydration kinetics were determined. Results showed that freeze-dried salmon cubes from each of the 3 Pacific salmon species can be produced with a moisture content of less that 10% and,aw,less 0.4 and freeze-drying time of 9 h. Processing yields ranged from 26% to 28.4%, depending on fish species. Shrinkage was less than 12% and rehydration of freeze-dried cubes was rapid. The value-added products developed have the potential to be utilized as ingredients for ready-to-eat soups, as snack food, salad topping, and baby finger-food. Practical Application:, Freeze-drying removes water from food products without heating them; therefore, this type of drying process yields very high-quality dried foods. In this study, a freeze-dry process was established to produce small cubes of Alaska pink, sockeye, and chum salmon. The goals were to shorten typical freeze-drying time while producing acceptable product characteristics. The freeze-drying process developed took only 9 h to remove about 97% of the moisture of diced Pacific salmon fillets. The freeze-dried salmon cubes produced can be used as ingredients for dehydrated ready-to-eat soups, as baby finger-foods, or as salad toppings. [source]


Effect of Water Phase Salt Content and Storage Temperature on Listeria monocytogenes Survival in Chum Salmon (Oncorhynchus keta) Roe and Caviar (Ikura)

JOURNAL OF FOOD SCIENCE, Issue 5 2007
Joong-Han Shin
ABSTRACT:, Salmon caviar, or ikura, is a ready-to-eat food prepared by curing the salmon roe in a brine solution. Other seasonings or flavorants may be added, depending upon the characteristics of the product desired. Listeria monocytogenes growth is a potential risk, since it can grow at high salt concentrations (>10%) and in some products at temperatures as low as 3 °C. Ikura was prepared from chum salmon (Oncorhynchus keta) roe by adding food-grade NaCl to yield water phase salt contents (WPS) of 0.22% (no added salt), 2.39%± 0.18%, 3.50%± 0.19%, and 4.36%± 0.36%. A cocktail containing L. monocytogenes (ATCC 19114, 7644, 19113) was incorporated into the ikura at 2 inoculum levels (log 2.4 and 4.2 CFU/g), and stored at 3 or 7 °C for up to 30 d. L. monocytogenes was recovered by plating onto modified Oxford media. Aerobic microflora were analyzed on plate count agar. Samples were tested at 0, 5, 10, 20, and 30 d. L. monocytogenes did not grow in chum salmon ikura held at 3 °C during 30 d at any salt level tested; however, the addition of salt at these levels did little to inhibit Listeria growth at 7 °C and counts reached 5 to 6 logs CFU/g. Components in the salmon egg intracellular fluid appear to inhibit the growth of L. monocytogenes. Total aerobic microflora levels were slightly lower in products with higher salt contents. These results indicate that temperature control is critical for ikura and similar products, but that products with lower salt contents can be safe, as long as good refrigeration is maintained. [source]


A structural comparison of three isoforms of anionic trypsin from chum salmon (Oncorhynchus keta)

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 7 2009
Eiko Toyota
Three anionic salmon trypsin isoforms (CST-1, CST-2 and CST-3) were isolated from the pyloric caeca of chum salmon (Oncorhynchus keta). The order of catalytic efficiency (Km/kcat) of the isoforms during BAPA hydrolysis was CST-2 > CST-1 > CST-3. In order to find a structural rationalization for the observed difference in catalytic efficiency, the X-ray crystallographic structures of the three isoforms were compared in detail. Some structural differences were observed in the C-terminal ,-helix, interdomain loop and active-site region. From the results of the detailed comparison, it appears that the structural flexibility of the C-terminal ,-helix, which interacts with the N-terminal domain, and the substrate-binding pocket in CST-3 are lower than those in CST-1 and CST-2. In addition, the conformation of the catalytic triad (His57, Asp102 and Ser195) differs among the three isoforms. The imidazole N atom of His57 in CST-1 and CST-2 forms a hydrogen bond to the hydroxyl O atom of Ser195, but the distance between the imidazole N atom of His57 and the hydroxyl O atom of Ser195 in CST-3 is too great (3.8,Å) for the formation of a hydrogen bond. Thus, the nucleophilicity of the hydroxyl group of Ser195 in CST-3 is weaker than that in CST-1 or CST-2. Furthermore, the electrostatic potential of the substrate-binding pocket in CST-2 is markedly lower than those in CST-1 and CST-3 owing to the negative charges of Asp150, Asp153 and Glu221B that arise from the long-range effect. These results may explain the higher catalytic efficiency of CST-2 compared with CST-1 and CST-3. [source]