Acceptor Interaction (acceptor + interaction)

Distribution by Scientific Domains


Selected Abstracts


Innovation of visualized interactive tools for learning molecular simulation curriculum

COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, Issue 1 2010
Wen-Tsai Sung
Abstract The goal of molecular simulation stability is to predict the detailed structure and physical properties of molecules in bioengineer's experiment curriculum. This work succeeds in citing minimum energy and some computer graphics technologies to support this theme. Molecular structure is that given the uncountable number of possible conformations for a protein, how we can determine the lowest energy structure. In this article the authors employed the previous researches-WebDeGrator and some existing molecular graphics tools to simulate various protein folding, ligand acceptor interaction, and molecular visualization. For this reason, bioengineer experimental curriculum will be visualization and interactive among learning members. Finally, Simpson's Taxonomy and pre- and post-test examinations are applied to System Evaluation, and molecular simulation and minimum energy will be discussed. © 2009 Wiley Periodicals, Inc. Comput Appl Eng Educ 18: 28,40, 2010; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/cae.20226 [source]


Hybrid Microstructures: One-Dimensional Microwires Formed by the Co-Assembly of Complementary Aromatic Donors and Acceptors (Adv. Funct.

ADVANCED FUNCTIONAL MATERIALS, Issue 11 2009
Mater.
A complementary donor-acceptor pair of truxene derivatives, Tr3 and its oxidized counterpart TrO3, are presented by Pei et al. on page 1746, and used to build a foundation for the investigation of aromatic donor,acceptor interaction. Two-component one-dimensional microstructures are realized by a simple solution process reliant on this interaction. Such a hybrid material opens new possibilities in the future design of multicomponent organic nano- and microstructures. [source]


One-Dimensional Microwires Formed by the Co-Assembly of Complementary Aromatic Donors and Acceptors

ADVANCED FUNCTIONAL MATERIALS, Issue 11 2009
Jie-Yu Wang
Abstract A truxene derivative (Tr3) with a C3 symmetric conjugated plane is synthesized; this derivative is a perfect match, in both size and structure, with its oxidized counterpart, the truxenone derivative (TrO3), a new electron acceptor that was recently reported. The complementary pair, Tr3 and TrO3, sets a good platform for the investigation of aromatic donor,acceptor interactions. Detailed 1H NMR experiments, photoluminescence spectroscopy, as well as differential scanning calorimetry are performed to investigate the interaction between Tr3 and TrO3, from solution to mesophase. One-dimensional microbelts readily formed from a 1:1 mixture of Tr3 and TrO3. Scanning electron microscopy, powder X-ray diffraction, as well as fluorescence microscopy are performed to elucidate their co-assembly structure in the solid state. Moreover, modulation of the co-assembly structure is easily realized by changing the concentration or mixing ratio. The present system opens the possibility of forming 1D heterostructures via electron donor,acceptor interaction, and its potential application as P,N junction and photowaveguide materials in optoelectronic devices. [source]


Versatile Self-Complexing Compounds Based on Covalently Linked Donor,Acceptor Cyclophanes

CHEMISTRY - A EUROPEAN JOURNAL, Issue 1 2005
Yi Liu Dr.
Abstract A range of covalently linked donor,acceptor compounds which contain 1) a hydroquinone (HQ) unit, 2) a 1,5-dioxynaphthalene (DNP) ring system, or 3) a tetrathiafulvalene (TTF) unit as the ,-donor, and 4) cyclobis(paraquat- p -phenylene) (CBPQT4+) as the ,-accepting tetracationic cyclophane were prepared and shown to operate as simple molecular machines. The ,-donating arms can be included inside the cyclophane in an intramolecular fashion by virtue of stabilizing noncovalent bonding interactions. What amounts to self-complexing/decomplexing equilibria were shown to be highly temperature dependent when the ,-donating arm contains either an HQ or DNP moiety. The thermodynamic parameters associated with the equilibria have been unraveled by using variable-temperature 1H NMR spectroscopy. The negative ,H° and ,S° values account for the fact that the "uncomplexed" conformation becomes the dominant species, since the entropy gain associated with the decomplexation process overcomes the enthalpy loss resulting from the breaking of the donor,acceptor interactions. The arm's in-and-out movements with respect to the linked cyclophanes can be arrested by installing a bulky substituent at the end of the arm. In the case of compounds carrying a DNP ring system in their side arm, two diastereoisomeric, self-complexing conformations are observed below 272 K in hexadeuterioacetone. By contrast, control over the TTF-containing arm's movement is more or less ineffective through the thermally sensitive equilibrium although it can be realized by chemical and electrochemical ways as a result of TTF's excellent redox properties. Such self-complexing compounds could find applications as thermo- and electroswitches. In addition, the thermochromism associated with the arm's movement could lead to some of the compounds finding uses as imaging and sensing materials. [source]


Temperature-Dependent and Friction-Controlled Electrochemically Induced Shuttling Along Molecular Strings Associated with Electrodes

CHEMPHYSCHEM, Issue 10 2005
Eugenii Katz Dr.
Abstract The temperature and solvent composition dependence of the electrochemically stimulated rate of shuttling of the redox-active cyclophane, cyclobis(paraquat- p -phenylene), on a molecular string has been studied. The molecular string includes a ,-donor diiminebenzene-site that is associated on one side with an electrode, and stoppered on the other side with an adamantane unit. The cyclophane rests on the ,-donor site, owing to stabilizing ,-donor,acceptor interactions. Electrochemical reduction of the cyclophane units, to the bis-radical cation cyclophane, results in the shuttling of the reduced cyclophane towards the electrode, a process that is driven by the removal of the stabilizing donor,acceptor interactions, and the electrostatic attraction of the reduced product by the electrode. The latter process is energetically downhill, and is temperature-independent. Upon oxidation of the reduced cyclophane that is associated with the electrode, the energetically uphill shuttling of the oxidized cyclophane to the ,-donor site proceeds. The rate of this translocation process has been found to be temperature-dependent, and controlled by the solvent composition. The experimental results have been theoretically analyzed in terms of Kramers' molecular friction model. The theoretical fitting of the experimental results, using solutions of variable composition, reveals that the rate-constants for the uphill reaction in a pure aqueous solution follow the temperature-dependence of the viscosity of water. The results demonstrate the significance of friction phenomena in shuttling processes within molecular machines. [source]


Donor,Acceptor Systems: Energy Transfer from CdS Quantum Dots/Rods to Nile Red Dye

CHEMPHYSCHEM, Issue 14 2008
Suparna Sadhu
Abstract We demonstrate strong evidence of shape-dependent efficient resonance energy transfer between CdS quantum dots (QDs) and quantum rods (QRs) (donor) to Nile Red dye (acceptor). We also report a simple solution-based method for the preparation of high quality CdS QDs and CdS QRs at relatively low temperature. The observed quenching of PL intensities are 78.8,% and 63.8,% for CdS QDs and QRs, respectively in the presence of Nile Red dye. The calculated energy-transfer efficiencies are 45,% and 19,% from QDs and QRs to dyes, respectively. The energy transfer varies with changing the shape of the nanoparticles. The estimated Förster distances (R0) are 37.8 and 33.8 Å for CdS QDs and QRs, respectively. In the present study, the estimated distances (r) between one donor and one acceptor are 39.1 and 43.1 Å for QDs and QRs, respectively, using the efficiency of Förster resonance energy transfer (FRET) which depends on the inverse sixth power of the distance of separations between one nanocrystal and one dye molecule. Considering single donor and multiple acceptors interactions, the calculated average distances (rn) between the donor and acceptor are 47.7 and 53.9 Å for QD's and QR's, respectively. The steady-state and time-resolved spectroscopic analysis of nanoassemblies confirm the formation of one donor and multiple acceptors. [source]