Home About us Contact | |||
Acceptor Complexes (acceptor + complex)
Selected AbstractsComparative G2(MP2) Molecular Orbital Study of B3H7XH3 and H3BXH3 Donor,Acceptor Complexes (X: N, P, and As).CHEMINFORM, Issue 51 2002A. Es-sofi No abstract is available for this article. [source] Theoretical investigation of charge transfer excitation and charge recombination in acenaphthylene,tetracyanoethylene complexINTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 1 2003Hai-Bo Yi Abstract Ab initio calculations were performed to investigate the charge separation and charge recombination processes in the photoinduced electron transfer reaction between tetracyanoethylene and acenaphthylene. The excited states of the charge-balanced electron donor,acceptor complex and the singlet state of ion pair complex were studied by employing configuration interaction singles method. The equilibrium geometry of electron donor,acceptor complex was obtained by the second-order Møller,Plesset method, with the interaction energy corrected by the counterpoise method. The theoretical study of ground state and excited states of electron donor,acceptor complex in this work reveals that the S1 and S2 states of the electron donor,acceptor complexes are excited charge transfer states, and charge transfer absorptions that corresponds to the S0 , S1 and S0 , S2 transitions arise from ,,,* excitations. The charge recombination in the ion pair complex will produce the charge-balanced ground state or excited triplet state. According to the generalized Mulliken,Hush model, the electron coupling matrix elements of the charge separation process and the charge recombination process were obtained. Based on the continuum model, charge transfer absorption and charge transfer emission in the polar solvent of 1,2-dichloroethane were investigated. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 23,35, 2003 [source] Photoinitiated alternating copolymerization of vinyl ethers with chlorotrifluoroethylenePOLYMER INTERNATIONAL, Issue 7 2002Manuel Gaboyard Abstract The photoinitiated copolymerization of chlorotrifluoroethylene (CTFE) with several vinyl ethers [ethyl vinyl ether (EVE), 2-chloroethyl vinyl ether (CEVE), cyclohexyl vinyl ether (CHVE), 4-hydroxybutyl vinyl ether (HBVE)] was studied. CTFE is an acceptor monomer (e,,,1.5) whereas vinyl ethers are donor monomers (e,,,,1.5), and therefore their copolymerization led to alternating copolymers, as indicated by elementary analysis. The equilibrium constant (KF) of the charge-transfer complex formation (CTC) was determined by 19F NMR spectroscopy. Under our experimental conditions, KF was low for CHVE/CTFE and HBVE/CTFE systems, 0.058 and 0.013,l mol,1 respectively. It can be assumed that the copolymerization involves the free monomers rather than propagation via the donor,acceptor complex. The alternating structure arises from the great difference in polarity between the two types of monomers. Several functional copolymers were prepared in good yield and with molecular weight close to 15,000,g,mol,1. © 2002 Society of Chemical Industry [source] Donor,acceptor complex of a new bis-TTF donor containing a pyridine diester spacer with TCNQ as the acceptor: a disappointing systemACTA CRYSTALLOGRAPHICA SECTION C, Issue 8 2010Lakhemici Kaboub A new bis-TTF donor (TTF is tetrathiafulvalene) containing a pyridine diester spacer, namely bis{2-[(6,7-tetramethylene-3-methylsulfanyltetrathiafulvalen-2-yl)sulfanyl]ethyl} pyridine-2,6-dicarboxylate,tetracyanoquinodimethane,dichloromethane (2/1/2), 2C33H33NO4S12·C12H4N4·2CH2Cl2, has been synthesized and its electron-donating ability determined by cyclic voltammetry. The electrical conductivity and crystal structure of this donor,acceptor (DA) complex with TCNQ (tetracyanoquinodimethane) as the acceptor are presented. The TCNQ moiety lies across a crystallographic inversion centre. In the crystal structure, TTF and TCNQ entities are arranged in alternate stacks; this feature, together with the bond lengths of the TCNQ molecule, suggest that the expected charge transfer has not occurred and that the D and A entities are in the neutral state, in agreement with the poor conductivity of the material (,RT = 2 × 10,6,S,cm,1). [source] Customized Electronic Coupling in Self-Assembled Donor,Acceptor NanostructuresADVANCED FUNCTIONAL MATERIALS, Issue 22 2009Dimas G. de Oteyza Abstract Charge transfer processes between donor,acceptor complexes and metallic electrodes are at the heart of novel organic optoelectronic devices such as solar cells. Here, a combined approach of surface-sensitive microscopy, synchrotron radiation spectroscopy, and state-of-the-art ab initio calculations is used to demonstrate the delicate balance that exists between intermolecular and molecule,substrate interactions, hybridization, and charge transfer in model donor,acceptor assemblies at metal-organic interfaces. It is shown that charge transfer and chemical properties of interfaces based on single component layers cannot be naively extrapolated to binary donor,acceptor assemblies. In particular, studying the self-assembly of supramolecular nanostructures on Cu(111), composed of fluorinated copper-phthalocyanines (F16CuPc) and diindenoperylene (DIP), it is found that, in reference to the associated single component layers, the donor (DIP) decouples electronically from the metal surface, while the acceptor (F16CuPc) suffers strong hybridization with the substrate. [source] Enhanced Photocurrents Generated by Supramolecular &!hyphen;Relay/CdS-Nanoparticle/ Electron-Donor Structures on Gold ElectrodesADVANCED MATERIALS, Issue 6 2009Ran Tel-Vered Supramolecular assemblies consisting of CdS nanoparticles linked to I,3 -encapsulated , -cyclodextrin and to ,-donor,acceptor complexes reveal the generation of enhanced photocurrents as a result of effective charge separation. The donor,acceptor complexes formed lead to effective trapping of the conduction-band electrons, and to concomitant scavenging of the valence-band holes by I,3 - encapsulated in the , -cyclodextrin receptor units. [source] Theoretical investigation of charge transfer excitation and charge recombination in acenaphthylene,tetracyanoethylene complexINTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 1 2003Hai-Bo Yi Abstract Ab initio calculations were performed to investigate the charge separation and charge recombination processes in the photoinduced electron transfer reaction between tetracyanoethylene and acenaphthylene. The excited states of the charge-balanced electron donor,acceptor complex and the singlet state of ion pair complex were studied by employing configuration interaction singles method. The equilibrium geometry of electron donor,acceptor complex was obtained by the second-order Møller,Plesset method, with the interaction energy corrected by the counterpoise method. The theoretical study of ground state and excited states of electron donor,acceptor complex in this work reveals that the S1 and S2 states of the electron donor,acceptor complexes are excited charge transfer states, and charge transfer absorptions that corresponds to the S0 , S1 and S0 , S2 transitions arise from ,,,* excitations. The charge recombination in the ion pair complex will produce the charge-balanced ground state or excited triplet state. According to the generalized Mulliken,Hush model, the electron coupling matrix elements of the charge separation process and the charge recombination process were obtained. Based on the continuum model, charge transfer absorption and charge transfer emission in the polar solvent of 1,2-dichloroethane were investigated. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 23,35, 2003 [source] Theoretical investigation of electron transfer transition in tetracyanoethylene-contained organic complexesJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 9 2002Xiang-Yuan Li Abstract In this work, the authors use complete active space self-consistent field method to investigate the photoinduced charge-separated states and the electron transfer transition in complexes ethylene-tetracyanoethylene and tetramethylethylene-tetracyanoethylene. Geometries of isolated tetracyanoethylene, ethylene, and tetramethylethylene have been optimized. The ground state and the low-lying excited states of ethylene and tetracyanoethylene have been optimized. The state energies in the gas phase have been obtained and compared with the experimentally observed values. The torsion barrier of tetracyanoethylene has been investigated through the state energy calculation at different conformations. Attention has been particularly paid to the charge-separated states and the electron transfer transition of complexes. The stacked conformations of the donor,acceptor complexes have been chosen for the optimization of the ground and low-lying excited states. Equilibrium solvation has been considered by means of conductor-like screening model both in water and in dichloromethane. It has been found that the donor and tetracyanoethylene remain neutral in complexes in ground state 1A1 and in lowest triplet state 3B1, but charge separation appears in excited singlet state 1B1. Through the correction of nonequilibrium solvation energy based on the spherical cavity approximation, ,,,* electron transfer transition energies have been obtained. Compared with the experimental measurements in dichloromethane, the theoretical results in the same solvent are found higher by about 0.5 eV. © 2002 Wiley Periodicals, Inc. J Comput Chem 23: 874,886, 2002 [source] Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dotsLUMINESCENCE: THE JOURNAL OF BIOLOGICAL AND CHEMICAL LUMINESCENCE, Issue 4-5 2005Qidan Chen Abstract In this work, donor,acceptor complexes were formed based on antibody,antigen interactions. Immunoglobulin antigen (mouse-IgG) was effectively conjugated to mercaptopropyl acid-modified CdTe quantum dot synthesized in aqueous solution via electrostatic interaction, while organic dyes,tetramethylrhodamine isothiocyanate (TRITC) were attached to the corresponding antibody (anti-mouse IgG). The mutual affinity of the antigen and antibody brought the CdTe quantum dot and TRITC sufficiently close together to allow the resonance dipole,dipole coupling required for fluorescence resonance energy transfer to occur. The formation of immunocomplexes resulted in fluorescence resonance energy transfer from the CdTe quantum dot donors to the TRITC acceptors. Copyright © 2005 John Wiley & Sons, Ltd. [source] |