Chitin

Distribution by Scientific Domains
Distribution within Life Sciences

Terms modified by Chitin

  • chitin content
  • chitin synthase

  • Selected Abstracts


    Chitin induces upregulation of B7-H1 on macrophages and inhibits T-cell proliferation

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2010
    Claudia J. Wagner
    Abstract Chitin is a highly abundant glycopolymer, which serves as structural component in fungi, arthropods and crustaceans but is not synthesized by vertebrates. However, vertebrates express chitinases and chitinase-like proteins, some of which are induced by infection with helminths suggesting that chitinous structures may be targets of the immune system. The chitin-induced modulations of the innate and adaptive immune responses are not well understood. Here, we demonstrate that intranasal administration of OVA and chitin resulted in diminished T-cell expansion and Th2 polarization as compared with OVA administration alone. Chitin did not promote nor attenuate Th2 polarization in vitro. Chitin-exposed macrophages inhibited proliferation of CD4+ T cells in a cell,cell contact-dependent manner. Chitin induced upregulation of the inhibitory ligand B7-H1 (PD-L1) on macrophages independently of MyD88, TRIF, TLR2, TLR3, TLR4 and Stat6. Inhibition of T-cell proliferation was largely dependent on B7-H1, as the effect was not observed in cocultures with cells from B7-H1-deficient mice. [source]


    Fabrication and Evaluation of Chitin-Based Nerve Guidance Conduits Used to Promote Peripheral Nerve Regeneration,

    ADVANCED ENGINEERING MATERIALS, Issue 11 2009
    Yumin Yang
    Chitin product was prepared from the chitosan counterpart and both were found to be equally biocompatible with cultured Schwann cells. Chitin- and chitosan-based nerve guidance conduits (NGCs) were surgically implanted to bridge 10-mm-long neural defects in rat sciatic nerves. The regenerative outcome provided positive evidence that chitin- and chitosan-based NGCs produce the similar beneficial effects on peripheral nerve regeneration. [source]


    Evolution and phylogenetic relationships of chitin synthases from yeasts and fungi

    FEMS YEAST RESEARCH, Issue 4 2002
    José Ruiz-Herrera
    Abstract Chitin, the structural component that provides rigidity to the cell wall of fungi is the product of chitin synthases (Chs). These enzymes are not restricted to fungi, but are amply distributed in four of the five eukaryotic ,crown kingdoms'. Dendrograms obtained by multiple alignment of Chs revealed that fungal enzymes can be classified into two divisions that branch into at least five classes, independent of fungal divergence. In contrast, oomycetes and animals each possess a single family of Chs. These results suggest that Chs originated as a branch of ,-glycosyl-transferases, once the kingdom Plantae split from the evolutionary line of eukaryotes. The existence of a single class of Chs in animals and Stramenopiles, against the multiple families in fungi, reveals that Chs diversification occurred after fungi departed from these kingdoms, but before separation of fungal groups. Accordingly, each fungal taxon contains members with enzymes belonging to different divisions and classes. Multiple alignment revealed the conservation of specific motifs characteristic of class, division and kingdom, but the strict conservation of only three motifs QXXEY, EDRXL and QXRRW, and seven isolated amino acids in the core region of all Chs. Determination of different structural features in this region of Chs brought to light a noticeable conservation of secondary structure in the proteins. [source]


    Endochitinase activity in the apoplastic fluid of Phellinus weirii -infected Douglas-fir and its association with over wintering and antifreeze activity

    FOREST PATHOLOGY, Issue 5 2003
    A. Zamani
    Summary Extracellular proteins were extracted from Phellinus weirii infected Douglas-fir (Pseudotsuga menziesii var. menziesii) roots and needles to examine endochitinase activity. Chitinases have been associated with the plant's defence response against fungal attack because they hydrolyse chitin, a structural component of fungal cell walls. Protein separation using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by Western immunoblot analysis using a polyclonal antibody specific to an endochitinase-like protein (ECP) resulted in the detection of up to three polypeptides between 27 and 30 kDa in size. Two-dimensional gel electrophoresis (2-D PAGE) followed by Western immunoblot analysis revealed that the apoplastic fluid contained multiple ECP isoforms with isoelectric points (pIs) ranging from 5.3 to 5.8 and molecular masses of 27,30 kDa. Chitinase activity in needle and root tissues was measured spectrophotometrically using a colorimetric assay. A gel overlay technique using glycol chitin as a substrate for endochitinase was applied to confirm that the ECP antibody detected an enzymatically active protein. The apoplastic fluid collected from P. weirii -infected winter Douglas-fir needles showed anti-freeze activity and seasonal analysis of needle tissue showed some evidence of ECP accumulation in winter months. ECP was distributed systemically throughout the tree. Increased levels of endochitinase activity in the region of P. weirii infection supports a physiological role for ECP in the plant defence response. Résumé Les protéines extra-cellulaires ont été extraites des racines et aiguilles de douglas (Pseudotsuga menziesii var menziesii) infectés par Phellinus weirii (Murr.) Gilbn., pour étudier l'activité endochitinase. Les chitinases ont été associées aux réactions de défense des plantes contre les attaques fongiques parce-qu'elles hydrolysent la chitine, un composant de la paroi des cellules fongiques. La séparation des protéines, réalisée par électrophorèse en gel de polyacrylamide avec sodium dodecyl sulfate (SDS-PAGE), suivie par une analyse par Western immunoblot en utilisant un anticorps polyclonal spécifique d'une protéine de type endochitinase (ECP), a permis la détection de 3 polypeptides de taille comprise entre 27 et 30 kDa. Une électrophorèse sur gel en 2-dimensions (2-D PAGE) suivie par une analyse par Western immunoblot a révélé que le fluide apoplastique contient de multiples isoformes d'ECP avec des pI dans une gamme de 5.3 à 5.8 et des masses moléculaires de 27 à 30 kDa. L'activité chitinase dans les aiguilles et tissus racinaires a été mesurée par spectrophotométrie par une méthode colorimétrique. Une technique d'overlay utilisant de la chitine glycol comme substrat de l'endochitinase a été appliquée pour confirmer que l'anticorps ECP avait détecté une protéine active du point de vue enzymatique. Le fluide apoplastique d'aiguilles récoltées en hiver sur des douglas infectés par P. weirii a montré une activité antigel et l'analyse saisonnière des tissus foliaires a montré une certaine accumulation d'ECP pendant l'hiver. L'ECP est répartie de façon systémique dans l'ensemble de l'arbre. Les niveaux accrus d'activité endochitinase dans la zone infectée par P. weirii suggère un rôle physiologique de l'ECP dans les réactions de défense de la plante. Zusammenfassung Aus Wurzeln und Nadeln von mit Phellinus weirii infizierten Douglasien (Pseudotsuga menziesii var. menziesii) wurden extrazelluläre Proteine extrahiert, um die Endochitinase-Aktivität zu bestimmen. Chitinasen werden mit der pflanzlichen Abwehrreaktion auf Pilzinfektionen in Verbindung gebracht, da sie Chitin, eine Strukturkomponente der pilzlichen Zellwand, hydrolysieren. Die Proteine wurden mit Natrium-Dodecyl-Sulfat-Polyacrylamid-Gelelektrophorese (SDS-PAGE) getrennt, gefolgt von einer Western Immunoblot-Analyse mit einem gegen ein Endochitinase-ähnliches Protein (ECP) spezifischen polyklonalen Antikörper. Hiermit liessen sich bis zu drei Polypeptide zwischen 27-30 kDa nachweisen. Eine zweidimensionale Gelelektrophorese (2-D PAGE) mit anschliessender Western Immunoblot-Analyse ergab, dass die Apoplastenflüssigkeit multiple ECP-Isoformen enthielt (mit pIs von 5,3 bis 5,8 und Molekularmassen von 27 bis 30 kDa). Die Chitinase-Aktivität wurde auch im Nadel- und Wurzelgewebe spektrophotometrisch mit einer Farbreaktion gemessen. Um sicher zu stellen, dass der ECP-Antikörper ein enzymatisch aktives Protein nachwies, wurde eine Gel-Overlay-Methode verwendet, mit Glycolchitin als Substrat für die Endochitinase. Die Apoplastenflüssigkeit der Nadeln von mit P. weirii infizierten Douglasien zeigte in Winterzustand eine Antifrost-Aktivität, ihre Analyse während des gesamten Jahres ergab aber keine Hinweise auf eine ECP-Anreicherung während der Wintermonate. ECP war systemisch im gesamten Baum enthalten. Die erhöhte Endochitinase-Aktivität in Bereichen mit P. weirii -Infektion lässt auf eine physiologische Rolle von ECP in der Pflanzenabwehr schliessen. [source]


    Glucosamine:fructose-6-phosphate aminotransferase: gene characterization, chitin biosynthesis and peritrophic matrix formation in Aedes aegypti

    INSECT MOLECULAR BIOLOGY, Issue 3 2002
    N. Kato
    Abstract Glucosamine:fructose-6-phosphate aminotransferase (GFAT) catalyses the formation of glucosamine 6-phosphate and is the first and rate-limiting enzyme of the hexosamine biosynthetic pathway. The final product of the hexosamine pathway, UDP- N -acetyl glucosamine, is an active precursor of numerous macromolecules containing amino sugars, including chitin in fungi and arthropods. Chitin is one of the essential components of insect cuticle and peritrophic matrix. The peritrophic matrix is produced in the midgut of mosquitoes in response to bloodfeeding, and may affect vector competence by serving as a physical barrier to pathogens. It is hypothesized that GFAT plays a regulatory role in biosynthesis of chitin and peritrophic matrix formation in insects. We cloned and sequenced the GFAT gene (AeGfat-1) and its 5, regulatory region from Aedes aegypti. There is no intron in AeGfat-1 and there are two potential transcription start sites. AeGfat-1 cDNA is 3.4 kb in length and its putative translation product is 75.4 kDa. The amino acid sequence of GFAT is highly conserved in lower and higher eukaryotes, as well as in bacteria. AeGfat-1 message is constitutively expressed but is gradually up-regulated in the midgut after bloodfeeding. The putative regulatory region of the gene contains the ecdysone response element, E74, and Broad complex motifs, similar to what is found in the glutamine synthetase gene in Ae. aegypti. Results suggest that Ae. aegypti GFAT-1 may have a regulatory role in chitin biosynthesis and peritrophic matrix formation, and probably is under the regulation of ecdysteroids. [source]


    Chemical characteristics and cytocompatibility of collagen-based scaffold reinforced by chitin fibers for bone tissue engineering

    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2006
    Xiaoming Li
    Abstract Chitin is a kind of seemly material to match PLLA for a scaffold, which may create an appropriate environment for the regeneration of tissues. In this study, we prepared and evaluated a new nano-hydroxyapatite/collagen/PLLA (nHACP) scaffold reinforced by chitin fibers for bone-tissue engineering. The chitin fibers were crosslinked with PLLA by dicyclohexylcarbodimide (DCC). The chemical characteristics were evaluated by Fourier transformed infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The mechanical strength was measured by compressive tests. The fibers, crosslinked with PLLA, could enhance the compressive strength of the scaffold about four times. Human marrow mesenchymal stem cells (MSCs) culture showed that the reinforced nHACP scaffolds were more cytocompatible than that without reinforcement. The crosslinks hardly affected the cytocompatibility of the reinforced scaffolds. The results suggested that the reinforced scaffolds (DCC crosslinked) might be a promising candidate for bone-tissue engineering. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2006 [source]


    Chitin production by Lactobacillus fermentation of shrimp biowaste in a drum reactor and its chemical conversion to chitosan

    JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 9 2005
    Mukku Shrinivas Rao
    Abstract Chitin was produced by fermenting shrimp heads and shells with Lactobacillus plantarum 541 in a drum reactor with an internal volume of 3 dm3. The crude chitin yield from heads and shells was 4.5 and 13% respectively, comparable to the values obtained by the chemical method. For shrimp heads 83% deproteination and 88% demineralisation and for shrimp shells 66% deproteination and 63% demineralisation were achieved. The liquor obtained in both cases was of good sensory quality with a high content of essential amino acids and therefore with potential to produce protein powder for human consumption. The crude chitin was refined and converted to chitosan using 12.5 M NaOH. The chitosan obtained had a residual ash and protein content below 1%, a solubility of more than 98%, a viscosity in the range 50,400 cP and a degree of deacetylation of 81,84%. The molecular weight was in the range (0.8,1.4) × 106 Da. IR analysis indicated that the chitosan obtained through fermentation was similar to that obtained by the chemical method. Copyright © 2005 Society of Chemical Industry [source]


    Preparation and Characterization of Microwave-treated Carboxymethyl Chitin and Carboxymethyl Chitosan Films for Potential Use in Wound Care Application

    MACROMOLECULAR BIOSCIENCE, Issue 10 2005
    Panya Wongpanit
    Abstract Summary: CM-chitin and CM-chitosan films were successfully crosslinked by microwave treatment. Crosslinking of the microwave-treated CM-chitin films involved mainly the carboxylate and the secondary alcohol groups, while crosslinking of microwave-treated CM-chitosan films involved the carboxylate and the amino groups. In addition, the crystallinity of CM-chitin increased with increasing microwave treatment time, whereas an increase in the crystallinity of the microwave-treated CM-chitosan films was not observed. At a similar percentage of weight loss, the crosslinking of either CM-chitin or CM-chitosan films by microwave treatment required much less stringent condition when compared with the crosslinking by autoclave treatment. Based on both direct and indirect cytotoxicity assays, the cytotoxicity of the microwave-treated CM-chitin films was negative, while that of the microwave-treated CM-chitosan films was positive. Human fibroblasts adhered on the surface of microwave-treated CM-chitosan films much better than on the surface of microwave-treated CM-chitin films. Total amount of protein synthesis of living NHGF cells that were cultured on chitin, microwave-treated CM-chitin, chitosan, microwave-treated CM-chitosan films. [source]


    Interactions of Enzymes and a Lectin with a Chitin-Based Graft Copolymer Having Polysarcosine Side Chains

    MACROMOLECULAR BIOSCIENCE, Issue 6 2004
    Rikiya Nakamura
    Abstract Summary: The molecular-recognition abilities of a water-soluble chitin derivative, chitin- graft -polysarcosine (2) were investigated using chitinase, lysozyme, and wheat germ agglutinin (WGA). The enzymatic degradabilities of 2 were evaluated using chitinase and lysozyme. The molecular weight of those compounds of 2 with a higher affinity toward water decreased rapidly, as compared with partially deacetylated chitin (1). The 1H NMR spectrum of the low-molecular-weight fraction, yielded after lysozymic hydrolysis, indicated that saccharide residues in the chitinous backbone were specifically recognized by the lysozyme, then , -glycosidic linkages in the backbone were selectively hydrolyzed. Furthermore, the molecular-recognition ability of the chitinous backbone of graft copolymer 2 toward the lectin WGA was elucidated by the enzyme-linked lectin-binding assay (ELLA). It was revealed that the graft copolymer with a lower degree of substitution (DS) value efficiently interacted with WGA. Interestingly, a graft copolymer having longer polysarcosine side chains showed higher recognition ability toward WGA than that having short side chains. The structure of the graft copolymer, chitin- graft -polysarcosine 2, used here. [source]


    Chitin and Chitosan , Highlights from the Chitin Symposium 2002 in Acapulco, Mexico

    MACROMOLECULAR BIOSCIENCE, Issue 10 2003
    Francisco M. Goycoolea
    [source]


    Enzymatic Synthesis of Chitin- and Chitosan- graft -Aliphatic Polyesters

    MACROMOLECULAR RAPID COMMUNICATIONS, Issue 20 2004
    Masayori Fujioka
    Abstract Summary: The title polymers, in which both the stem and the graft are biodegradable, have been synthesized for the first time in a one-pot, lipase-catalyzed, graft-polymerization reaction (in bulk, at 70,°C) of , -butyrolactone (, -BL) and , -caprolactone (, -CL) onto chitin and chitosan. The reactivity order of the lactones was found to be , -CL,>,, -BL,,,, -BL (no reaction). All the graft polymers prepared are insoluble in common organic solvents. Synthesis of chitin- or chitosan- graft -aliphatic polyesters. [source]


    Atypical polysaccharide physical gels: structure/property relationships

    MACROMOLECULAR SYMPOSIA, Issue 1 2003
    Alexandra Clayer
    Abstract Chitin and chitosan are polysaccharides produced by the biomass. They have the same general chemical structure and constitute the series of linear copolymers of linked ,, (1->4) glucosamine and N-actylglucosamine. We studied the possibility of forming physical gels with all the terms of this series, whatever the proportion of the two kinds of residues included in the polymer chains. We show that physical gelation is still possible through a percolating process when certain important conditions are met. Initially the concentration in polymer must be above C*; a critical value of the balance between hydrophobic and hydrophilic interactions must be achieved and gelation must occur simultaneously everywhere in the medium. These conditions were observed in several situations allowing the formation of different kinds of gels at all values of DA. In view of the rare bio-active properties of chitin and chitosan, these gels were tested for living tissue regeneration and constitute very interesting examples in illustration of our concept of decoys for biological media. [source]


    Differential effect of materials for surface hemostasis on red blood cell morphology

    MICROSCOPY RESEARCH AND TECHNIQUE, Issue 10 2008
    Carr J. Smith
    Abstract The design of devices for surface (topical) hemostasis has been based on maximizing activation of platelets and accelerating coagulation pathways. The studies reported herein examine another aspect of blood contact with topical hemostasis materials, i.e., surface binding of red blood cells (RBCs) and related alterations in RBC morphology. Whole blood was allowed to contact poly- N -acetyl glucosamine (pGlcNAc) containing materials: pGlcNAc nanofibers with parallel polymer alignment (,-pGlcNAc), chitin, and chitosan. The effect on RBC morphology and function via contact with the artificial surfaces on the cell's morphology was examined with scanning and transmission electron microscopy (TEM). ,-pGlcNAc was found to densely bind RBCs and induce a stomatocytic-like morphology. Chitin and chitosan also bound RBCs, but with approximately 10-fold lower levels and with less distinct general morphologies. ,-pGlcNAc is thus unique in the nature of its interaction with RBCs. These studies indicate that the differential ability of various materials to bind and alter the morphology of RBCs at the artificial surface interface with blood is an important consideration in the design of devices for surface hemostasis. Microsc. Res. Tech., 2008. © 2008 Wiley-Liss, Inc. [source]


    Microarray analysis of chitin elicitation in Arabidopsis thaliana

    MOLECULAR PLANT PATHOLOGY, Issue 5 2002
    Katrina M. Ramonell
    Summary Chitin oligomers, released from fungal cell walls by endochitinase, induce defence and related cellular responses in many plants. However, little is known about chitin responses in the model plant Arabidopsis. We describe here a large-scale characterization of gene expression patterns in Arabidopsis in response to chitin treatment using an Arabidopsis microarray consisting of 2375 EST clones representing putative defence-related and regulatory genes. Transcript levels for 71 ESTs, representing 61 genes, were altered three-fold or more in chitin-treated seedlings relative to control seedlings. A number of transcripts exhibited altered accumulation as early as 10 min after exposure to chitin, representing some of the earliest changes in gene expression observed in chitin-treated plants. Included among the 61 genes were those that have been reported to be elicited by various pathogen-related stimuli in other plants. Additional genes, including genes of unknown function, were also identified, broadening our understanding of chitin-elicited responses. Among transcripts with enhanced accumulation, one cluster was enriched in genes with both the W-box promoter element and a novel regulatory element. In addition, a number of transcripts had decreased abundance, encoding several proteins involved in cell wall strengthening and wall deposition. The chalcone synthase promoter element was identified in the upstream regions of these genes, suggesting that pathogen signals may suppress the expression of some genes. These data indicate that Arabidopsis should be an excellent model to elucidate the mechanisms of chitin elicitation in plant defence. [source]


    FEMO modelling of optical properties of natural biopolymers chitin and chitosan

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 12 2008
    G. Luna-Bárcenas
    Abstract Chitin and its derivative chitosan are widely used in the food, cosmetic, agricultural and biomedical industries because of their physicochemical and biocompatible properties. In this work, we studied thin films of both materials prepared by a solvent-cast method. The optical properties were investigated in the UV-VIS and infrared (IR) spectral regions; both biopolymers exhibit similar absorption bands characterized by two regions at 250,500 nm and at 850,1300 nm. Chitin and chitosan have practically the same parameters of a crystalline structure. We assume that these features (similarity of the structure and of the optical properties) are not just the coincidence but reflect the essential relation between the crystalline structure symmetry and the electronic transitions. The later was modeled on the basis of the quantum mechanical Free Electron Molecular Orbital approximation, using the new type, mirror-like boundary conditions. The calculations made on the basis of the known parameters of crystalline structure give reasonable agreement with the experimental spectra without any adjustable parameters. The difference between the optical properties of the two materials in the IR region reflects the difference in their molecular structure and composition. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Effect of genipin-crosslinked chitin-chitosan scaffolds with hydroxyapatite modifications on the cultivation of bovine knee chondrocytes

    BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2006
    Yung-Chih Kuo
    Abstract Chitin and chitosan were hybridized in various weight percentages by genipin crosslinkage under various prefreezing temperatures to form tissue-engineering scaffolds via lyophilization. In addition, deposition of hydroxyapatite (HA) on the surface of the porous scaffolds was performed by precipitation method to achieve modified chemical compositions for chondrocyte attachments and growths. The experimental results revealed that a lower prefreezing temperature or a higher weight percentage of chitin in the chitin-chitosan scaffolds would yield a smaller pore diameter, a greater porosity, a larger specific surface area, a higher Young's modulus, and a lower extensibility. Moreover, a higher chitin percentage could also result in a higher content of amine groups after crosslink and a lower onset temperature for the phase transition after thermal treatment. A decrease in the prefreezing temperature from ,4°C to ,80°C, an increase in the chitin percentage from 20% to 50%, and an increase in the cycle number of alternate immersion for HA deposition from 1 to 5 generated positive effects on the cell number, the content of glycosaminoglycans, and the collagen level over 28-day cultivation of bovine knee chondrocytes. © 2006 Wiley Periodicals, Inc. [source]


    Shell disease in crustaceans , just chitin recycling gone wrong?

    ENVIRONMENTAL MICROBIOLOGY, Issue 4 2008
    Claire L. Vogan
    Summary The exoskeletons of aquatic crustaceans and other arthropods contain chitin, a biopolymer of ,-(1,4)-linked N -acetylglucosamine together with associated proteins. Despite the vast amounts of chitin within such animals little is found in sediments and open water because microorganisms rapidly degrade this following its loss after moulting or upon the animals' death. Shell disease syndrome is a worldwide disease condition that affects a wide range of crustaceans. It comes about as a result of bacterial degradation of the exoskeleton leading to unsightly lesions and even death if the underlying tissues become infected. There are at least two potential forms of the disease; one that appears to centre around chitin degradation and an additional form termed ,epizootic' shell disease, in which chitin degradation is of less significance. This account reviews our current understanding of the causative agents of this syndrome, assesses the potential economic consequences of the disease, and critically examines whether it is associated with anthropogenic disturbances including pollution. Overall, despite extensive studies during the last few decades, the potential links between faecal, heavy metal and insecticide pollution and shell disease are still unclear. [source]


    Multiple stressor effects of methoprene, permethrin, and salinity on limb regeneration and molting in the mud fiddler crab (UCA pugnax)

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2009
    Todd A. Stueckle
    Abstract Exposure to multiple stressors from natural and anthropogenic sources poses risk to sensitive crustacean growth and developmental processes. Applications of synthetic pyrethroids and insect growth regulators near shallow coastal waters may result in harmful mixture effects depending on the salinity regime. The potential for nonadditive effects of a permethrin (0.01,2 ,g/L), methoprene (0.03,10 ,g/L), and salinity (10,40 ppt) exposure on male and female Uca pugnax limb regeneration and molting processes was evaluated by employing a central composite rotatable design with multifactorial regression. Crabs underwent single-limb autotomy followed by a molting challenge under 1 of 16 different mixture treatments. During the exposure (21,66 d), individual limb growth, major molt stage duration, abnormal limb regeneration, and respiration were monitored. At 6 d postmolt, changes in body mass, carapace width, and body condition factor were evaluated. Dorsal carapace tissue was collected, and protein and chitin were extracted to determine the composition of newly synthesized exoskeleton. The present results suggest chronic, low-dose exposures to multiple pesticide stressors cause less-than-additive effects on U. pugnax growth processes. Under increasing concentrations of methoprene and permethrin, males had more protein in their exoskeletons and less gain in body mass, carapace width, and body condition compared to females. Females exhibited less gain in carapace width than controls in response to methoprene and permethrin. Females also displayed elevated respiration rates at all stages of molt, suggesting a high metabolic rate. Divergent growth and fitness between the sexes over the long term could influence crustacean population resilience. [source]


    Association of europium(III), americium(III), and curium(III) with cellulose, chitin, and chitosan

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2006
    Takuo Ozaki
    Abstract The association of trivalent f-elements,Eu(III), Am(III), and Cm(III),with cellulose, chitin, and chitosan was determined by batch experiments and time-resolved, laser-induced fluorescence spectroscopy (TRLFS). The properties of these biopolymers as an adsorbent were characterized based on speciation calculation of Eu(III). The adsorption study showed that an increase of the ionic strength by NaCl did not affect the adsorption kinetics of Eu(III), Am(III), and Cm(III) for all the biopolymers, but the addition of Na2CO3 significantly delayed the kinetics because of their trivalent f-element complexation with carbonate ions. It also was suggested from the speciation calculation study that all the biopolymers were degraded under alkaline conditions, leading to their masking of the adsorption of Eu(III), Am(III), and Cm(III) on the nondegraded biopolymers. The masking effect was higher for cellulose than for chitin and chitosan, indicating that of the three, cellulose was degraded most significantly in alkaline solutions. Desorption experiments suggested that some portion of the adsorbed Eu(III) penetrated deep into the matrix, being isolated in a cavity-like site. The TRLFS study showed that the coordination environment of Eu(III) is stabilized mainly by the inner spherical coordination in chitin and by the outer spherical coordination in chitosan, with less association in cellulose in comparison to chitin and chitosan. These results suggest that the association of these biopolymers with Eu(III), Am(III), and Cm(III) is governed not only by the affinity of the functional groups alone but also by other factors, such as the macromolecular steric effect. The association of degraded materials of the biopolymers also should be taken into consideration for an accurate prediction of the influence of biopolymers on the migration behavior of trivalent f-elements. [source]


    Chitin induces upregulation of B7-H1 on macrophages and inhibits T-cell proliferation

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2010
    Claudia J. Wagner
    Abstract Chitin is a highly abundant glycopolymer, which serves as structural component in fungi, arthropods and crustaceans but is not synthesized by vertebrates. However, vertebrates express chitinases and chitinase-like proteins, some of which are induced by infection with helminths suggesting that chitinous structures may be targets of the immune system. The chitin-induced modulations of the innate and adaptive immune responses are not well understood. Here, we demonstrate that intranasal administration of OVA and chitin resulted in diminished T-cell expansion and Th2 polarization as compared with OVA administration alone. Chitin did not promote nor attenuate Th2 polarization in vitro. Chitin-exposed macrophages inhibited proliferation of CD4+ T cells in a cell,cell contact-dependent manner. Chitin induced upregulation of the inhibitory ligand B7-H1 (PD-L1) on macrophages independently of MyD88, TRIF, TLR2, TLR3, TLR4 and Stat6. Inhibition of T-cell proliferation was largely dependent on B7-H1, as the effect was not observed in cocultures with cells from B7-H1-deficient mice. [source]


    Fabrication and Evaluation of Chitin-Based Nerve Guidance Conduits Used to Promote Peripheral Nerve Regeneration,

    ADVANCED ENGINEERING MATERIALS, Issue 11 2009
    Yumin Yang
    Chitin product was prepared from the chitosan counterpart and both were found to be equally biocompatible with cultured Schwann cells. Chitin- and chitosan-based nerve guidance conduits (NGCs) were surgically implanted to bridge 10-mm-long neural defects in rat sciatic nerves. The regenerative outcome provided positive evidence that chitin- and chitosan-based NGCs produce the similar beneficial effects on peripheral nerve regeneration. [source]


    The chitinolytic system of Lactococcus lactis ssp. lactis comprises a nonprocessive chitinase and a chitin-binding protein that promotes the degradation of ,- and ,-chitin

    FEBS JOURNAL, Issue 8 2009
    Gustav Vaaje-Kolstad
    It has recently been shown that the Gram-negative bacterium Serratia marcescens produces an accessory nonhydrolytic chitin-binding protein that acts in synergy with chitinases. This provided the first example of the production of dedicated helper proteins for the turnover of recalcitrant polysaccharides. Chitin-binding proteins belong to family 33 of the carbohydrate-binding modules, and genes putatively encoding these proteins occur in many microorganisms. To obtain an impression of the functional conservation of these proteins, we studied the chitinolytic system of the Gram-positive Lactococcus lactis ssp. lactis IL1403. The genome of this lactic acid bacterium harbours a simple chitinolytic machinery, consisting of one family 18 chitinase (named LlChi18A), one family 33 chitin-binding protein (named LlCBP33A) and one family 20 N -acetylhexosaminidase. We cloned, overexpressed and characterized LlChi18A and LlCBP33A. Sequence alignments and structural modelling indicated that LlChi18A has a shallow substrate-binding groove characteristic of nonprocessive endochitinases. Enzymology showed that LlChi18A was able to hydrolyse both chitin oligomers and artificial substrates, with no sign of processivity. Although the chitin-binding protein from S. marcescens only bound to ,-chitin, LlCBP33A was found to bind to both ,- and ,-chitin. LlCBP33A increased the hydrolytic efficiency of LlChi18A to both ,- and ,-chitin. These results show the general importance of chitin-binding proteins in chitin turnover, and provide the first example of a family 33 chitin-binding protein that increases chitinase efficiency towards ,-chitin. [source]


    Crystal structure and enzymatic properties of a bacterial family 19 chitinase reveal differences from plant enzymes

    FEBS JOURNAL, Issue 21 2006
    Ingunn A. Hoell
    We describe the cloning, overexpression, purification, characterization and crystal structure of chitinase G, a single-domain family 19 chitinase from the Gram-positive bacterium Streptomyces coelicolor A3(2). Although chitinase G was not capable of releasing 4-methylumbelliferyl from artificial chitooligosaccharide substrates, it was capable of degrading longer chitooligosaccharides at rates similar to those observed for other chitinases. The enzyme was also capable of degrading a colored colloidal chitin substrate (carboxymethyl-chitin,remazol,brilliant violet) and a small, presumably amorphous, subfraction of ,-chitin and ,-chitin, but was not capable of degrading crystalline chitin completely. The crystal structures of chitinase G and a related Streptomyces chitinase, chitinase C [Kezuka Y, Ohishi M, Itoh Y, Watanabe J, Mitsutomi M, Watanabe T & Nonaka T (2006) J Mol Biol358, 472,484], showed that these bacterial family 19 chitinases lack several loops that extend the substrate-binding grooves in family 19 chitinases from plants. In accordance with these structural features, detailed analysis of the degradation of chitooligosaccharides by chitinase G showed that the enzyme has only four subsites (, 2 to +,2), as opposed to six (, 3 to +,3) for plant enzymes. The most prominent structural difference leading to reduced size of the substrate-binding groove is the deletion of a 13-residue loop between the two putatively catalytic glutamates. The importance of these two residues for catalysis was confirmed by a site-directed mutagenesis study. [source]


    Bacterial quorum sensing and nitrogen cycling in rhizosphere soil

    FEMS MICROBIOLOGY ECOLOGY, Issue 2 2008
    Kristen M. DeAngelis
    Abstract Plant photosynthate fuels carbon-limited microbial growth and activity, resulting in increased rhizosphere nitrogen (N) mineralization. Most soil organic nitrogen is macromolecular (chitin, protein, nucleotides); enzymatic depolymerization is likely rate limiting for plant nitrogen accumulation. Analyzing Avena (wild oat) planted in microcosms containing sieved field soil, we observed increased rhizosphere chitinase and protease-specific activities, bacterial cell densities, and dissolved organic nitrogen (DON) compared with bulk soil. Low-molecular-weight (MW) DON (<3000 Da) was undetectable in bulk soil but comprised 15% of rhizosphere DON. Extracellular enzyme production in many bacteria requires quorum sensing (QS), cell-density-dependent group behavior. Because proteobacteria are considered major rhizosphere colonizers, we assayed the proteobacterial QS signals N -acyl-homoserine lactones (AHLs), which were significantly increased in the rhizosphere. To investigate the linkage between soil signaling and nitrogen cycling, we characterized 533 bacterial isolates from Avena rhizosphere: 24% had chitinase or protease activity and AHL production; disruption of QS in seven of eight isolates disrupted enzyme activity. Many Alphaproteobacteria were newly found with QS-controlled extracellular enzyme activity. Enhanced specific activities of nitrogen-cycling enzymes accompanied by bacterial density-dependent behaviors in rhizosphere soil gives rise to the hypothesis that QS could be a control point in the complex process of rhizosphere nitrogen mineralization. [source]


    Absence of Gup1p in Saccharomyces cerevisiae results in defective cell wall composition, assembly, stability and morphology

    FEMS YEAST RESEARCH, Issue 7 2006
    Célia Ferreira
    Abstract Saccharomyces cerevisiae Gup1p and its homologue Gup2p, members of the superfamily of membrane-bound O -acyl transferases, were previously associated with glycerol-mediated salt-stress recovery and glycerol symporter activity. Several other phenotypes suggested Gup1p involvement in processes connected with cell structure organization and biogenesis. The gup1, mutant is also thermosensitive and exhibits an altered plasma membrane lipid composition. The present work shows that the thermosensitivity is independent of glycerol production and retention. Furthermore, the mutant grows poorly on salt, ethanol and weak carboxylic acids, suggestive of a malfunctioning membrane potential. Additionally, gup1, is sensitive to cell wall-perturbing agents, such as Calcofluor white, Zymolyase, lyticase and sodium dodecyl sulphate and exhibits a sedimentation/aggregation phenotype. Quantitative analysis of cell wall components yielded increased contents of chitin and ,-1,3-glucans and lower amounts of mannoproteins. Consistently, scanning electron microscopy showed a strikingly rough surface morphology of the mutant cells. These results suggest that the gup1, is affected in cell wall assembly and stability, although the Slt2p/MAP kinase from the PKC pathway was phosphorylated during hypo-osmotic shock to a normal extent. Results emphasize the pleiotropic nature of gup1,, and are consistent with a role of Gulp1p in connection with several pathways for cell maintenance and construction/remodelling. [source]


    Endochitinase activity in the apoplastic fluid of Phellinus weirii -infected Douglas-fir and its association with over wintering and antifreeze activity

    FOREST PATHOLOGY, Issue 5 2003
    A. Zamani
    Summary Extracellular proteins were extracted from Phellinus weirii infected Douglas-fir (Pseudotsuga menziesii var. menziesii) roots and needles to examine endochitinase activity. Chitinases have been associated with the plant's defence response against fungal attack because they hydrolyse chitin, a structural component of fungal cell walls. Protein separation using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by Western immunoblot analysis using a polyclonal antibody specific to an endochitinase-like protein (ECP) resulted in the detection of up to three polypeptides between 27 and 30 kDa in size. Two-dimensional gel electrophoresis (2-D PAGE) followed by Western immunoblot analysis revealed that the apoplastic fluid contained multiple ECP isoforms with isoelectric points (pIs) ranging from 5.3 to 5.8 and molecular masses of 27,30 kDa. Chitinase activity in needle and root tissues was measured spectrophotometrically using a colorimetric assay. A gel overlay technique using glycol chitin as a substrate for endochitinase was applied to confirm that the ECP antibody detected an enzymatically active protein. The apoplastic fluid collected from P. weirii -infected winter Douglas-fir needles showed anti-freeze activity and seasonal analysis of needle tissue showed some evidence of ECP accumulation in winter months. ECP was distributed systemically throughout the tree. Increased levels of endochitinase activity in the region of P. weirii infection supports a physiological role for ECP in the plant defence response. Résumé Les protéines extra-cellulaires ont été extraites des racines et aiguilles de douglas (Pseudotsuga menziesii var menziesii) infectés par Phellinus weirii (Murr.) Gilbn., pour étudier l'activité endochitinase. Les chitinases ont été associées aux réactions de défense des plantes contre les attaques fongiques parce-qu'elles hydrolysent la chitine, un composant de la paroi des cellules fongiques. La séparation des protéines, réalisée par électrophorèse en gel de polyacrylamide avec sodium dodecyl sulfate (SDS-PAGE), suivie par une analyse par Western immunoblot en utilisant un anticorps polyclonal spécifique d'une protéine de type endochitinase (ECP), a permis la détection de 3 polypeptides de taille comprise entre 27 et 30 kDa. Une électrophorèse sur gel en 2-dimensions (2-D PAGE) suivie par une analyse par Western immunoblot a révélé que le fluide apoplastique contient de multiples isoformes d'ECP avec des pI dans une gamme de 5.3 à 5.8 et des masses moléculaires de 27 à 30 kDa. L'activité chitinase dans les aiguilles et tissus racinaires a été mesurée par spectrophotométrie par une méthode colorimétrique. Une technique d'overlay utilisant de la chitine glycol comme substrat de l'endochitinase a été appliquée pour confirmer que l'anticorps ECP avait détecté une protéine active du point de vue enzymatique. Le fluide apoplastique d'aiguilles récoltées en hiver sur des douglas infectés par P. weirii a montré une activité antigel et l'analyse saisonnière des tissus foliaires a montré une certaine accumulation d'ECP pendant l'hiver. L'ECP est répartie de façon systémique dans l'ensemble de l'arbre. Les niveaux accrus d'activité endochitinase dans la zone infectée par P. weirii suggère un rôle physiologique de l'ECP dans les réactions de défense de la plante. Zusammenfassung Aus Wurzeln und Nadeln von mit Phellinus weirii infizierten Douglasien (Pseudotsuga menziesii var. menziesii) wurden extrazelluläre Proteine extrahiert, um die Endochitinase-Aktivität zu bestimmen. Chitinasen werden mit der pflanzlichen Abwehrreaktion auf Pilzinfektionen in Verbindung gebracht, da sie Chitin, eine Strukturkomponente der pilzlichen Zellwand, hydrolysieren. Die Proteine wurden mit Natrium-Dodecyl-Sulfat-Polyacrylamid-Gelelektrophorese (SDS-PAGE) getrennt, gefolgt von einer Western Immunoblot-Analyse mit einem gegen ein Endochitinase-ähnliches Protein (ECP) spezifischen polyklonalen Antikörper. Hiermit liessen sich bis zu drei Polypeptide zwischen 27-30 kDa nachweisen. Eine zweidimensionale Gelelektrophorese (2-D PAGE) mit anschliessender Western Immunoblot-Analyse ergab, dass die Apoplastenflüssigkeit multiple ECP-Isoformen enthielt (mit pIs von 5,3 bis 5,8 und Molekularmassen von 27 bis 30 kDa). Die Chitinase-Aktivität wurde auch im Nadel- und Wurzelgewebe spektrophotometrisch mit einer Farbreaktion gemessen. Um sicher zu stellen, dass der ECP-Antikörper ein enzymatisch aktives Protein nachwies, wurde eine Gel-Overlay-Methode verwendet, mit Glycolchitin als Substrat für die Endochitinase. Die Apoplastenflüssigkeit der Nadeln von mit P. weirii infizierten Douglasien zeigte in Winterzustand eine Antifrost-Aktivität, ihre Analyse während des gesamten Jahres ergab aber keine Hinweise auf eine ECP-Anreicherung während der Wintermonate. ECP war systemisch im gesamten Baum enthalten. Die erhöhte Endochitinase-Aktivität in Bereichen mit P. weirii -Infektion lässt auf eine physiologische Rolle von ECP in der Pflanzenabwehr schliessen. [source]


    Meu10 is required for spore wall maturation in Schizosaccharomyces pombe

    GENES TO CELLS, Issue 2 2002
    Takahiro Tougan
    Background: Many genes are meiosis and/or sporulation-specifically transcribed during this process. Isolation and analysis of these genes might help us to understand how meiosis and sporulation are regulated. For this purpose, we have isolated a large number of cDNA clones from Schizosaccharomyces pombe whose expression is up-regulated during meiosis. Results: We have isolated meu10+ gene, which encodes 416 amino acids and bears homology to SPS2 of Saccharomyces cerevisiae. A strain whose meu10+ gene has been deleted forms no viable spores. Thin-section electron micrographs showed that the meu10, strain has abnormally formed spore walls, and then they disrupt, allowing cytoplasmic material to escape. The Meu10-GFP fusion protein is localized to the spore periphery, thereafter returned to the cytoplasm after sporulation. Meu10-GFP localization to the spore wall was almost normal in the bgs2, or chs1, mutants that lack 1,3-,-glucan or chitin, respectively. In contrast, 1,3-,-glucan is abnormally localized in meu10, cells. Meu10 has an N-terminal domain with homology to the mammalian insulin receptor and a C-terminal domain with a transmembrane motif. Mutants whose N-terminal or C-terminal domain was truncated were severely defective for sporulation. Conclusions: Meu10 is a spore wall component and plays a pivotal role in the formation of the mature spore wall structure. [source]


    2-Azido-2-deoxycellulose: Synthesis and 1,3-Dipolar Cycloaddition

    HELVETICA CHIMICA ACTA, Issue 4 2008
    Fuyi Zhang
    Abstract Chitosan (1) was prepared by basic hydrolysis of chitin of an average molecular weight of 70000 Da, 1H-NMR spectra indicating almost complete deacetylation. N -Phthaloylation of 1 yielded the known N -phthaloylchitosan (2), which was tritylated to provide 3a and methoxytritylated to 3b. Dephthaloylation of 3a with NH2NH2,H2O gave the 6- O -tritylated chitosan 4a. Similarly, 3b gave the 6- O -methoxytritylated 4b. CuSO4 -Catalyzed diazo transfer to 4a yielded 95% of the azide 5a, and uncatalyzed diazo transfer to 4b gave 82% of azide 5b. Further treatment of 5a with CuSO4 produced 2-azido-2-deoxycellulose (7). Demethoxytritylation of 5b in HCOOH gave 2-azido-2-deoxy-3,6-di- O -formylcellulose (6), which was deformylated to 7. The 1,3-dipolar cycloaddition of 7 to a range of phenyl-, (phenyl)alkyl-, and alkyl-monosubstituted alkynes in DMSO in the presence of CuI gave the 1,2,3-triazoles 8,15 in high yields. [source]


    Aragonite Formation in the Chiton (Mollusca) Girdle

    HELVETICA CHIMICA ACTA, Issue 4 2003
    Keren Treves
    In the chitons (Polyplacophora, Mollusca), the body is not entirely protected by the shell. Mineralized spicules or scales often, but not always, decorate the exposed part of the girdle. Here, we report a study on the composition and ultrastructural organization of these mineralized skeletal parts in four different chiton species. In all specimens, the mineral component (97,98,wt-%) is aragonite, and the organic matrix (2,3,wt-%) consists of highly glycosylated proteins. X-Ray diffraction and scanning electron microscopy show that the organic matrix fibers are aligned, morphologically and crystallographically, with the prismatic aragonite crystals. Matrix and mineral are thus clearly related. The matrix,mineral composite bundles are, however, assembled in the various skeletal parts examined with widely different degrees of alignment and order. In the same organism, the crystals are aligned within a range of ±15° in one type of spicule, while they are randomly oriented in another type. The wide heterogeneity in shape, density, and ultrastructure suggests that the girdle mineralized tissues do not fulfill a fundamental role necessary for the survival of the organism. This, together with the lack of chitin in the organic matrix, supports the hypothesis that they evolved separately from the other chiton mineralized tissues, namely the shell plates and teeth. [source]


    Revealing the Design Principles of High-Performance Biological Composites Using Ab initio and Multiscale Simulations: The Example of Lobster Cuticle

    ADVANCED MATERIALS, Issue 4 2010
    Svetoslav Nikolov
    Natural materials are hierarchically structured nanocomposites. A bottom-up multiscale approach to model the mechanical response of the chitin-based mineralized cuticle material of Homarus americanus is presented, by combining quantum-mechanical ab initio calculations with hierarchical homogenization. The simulations show how the mechanical properties are transferred from the atomic scale through a sequence of specifically designed microstructures to realize optimal stiffness. [source]