Chiral Information (chiral + information)

Distribution by Scientific Domains


Selected Abstracts


Long-range effects of chirality in aromatic poly(isocyanide)s

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 10 2006
David B. Amabilino
Abstract The preparation of optically active atropoisomeric polymers which present chiral backbones, thanks to induction during their synthesis from stereogenic centers, located far away from the skeleton is possible, thanks principally to semirigid conformations of the promesogenic spacers between them. The result is that chiral "information" can be passed as far as 21 Å from the asymmetric center to the carbon atom that forms the polymeric chain in poly(isocyanide)s. The sense of chiral induction in these conformationally rigid polymers parallels the helical sense of the cholesteric phases, as well as to the helical senses of chiral smectic C phases, induced by the monomers in nematic and smectic C phases, respectively. All these phenomena obey the odd,even rules proposed for chiral sense changes in these liquid crystalline phases. Noncovalent interactions play an important part in the induction process, in which steric arguments can be used to justify the inductions observed. The methodology can be used to prepare macromolecules, which display switching behavior upon thermal or electrochemical stimulus. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3161,3174, 2006 [source]


New Chiral N-Heterocyclic Carbene Ligands in Palladium-Catalyzed ,-Arylations of Amides: Conformational Locking through Allylic Strain as a Device for Stereocontrol

CHEMISTRY - A EUROPEAN JOURNAL, Issue 21 2010
Yi-Xia Jia Dr.
Abstract New Enders/Herrmann-type chiral N-heterocyclic carbene (NHC) ligands have been developed and applied in asymmetric palladium-catalyzed intramolecular ,-arylations of amides. The best ligands feature the bulky tert -butyl group and ortho -substituted aryl groups at the stereogenic centers. Aryl bromides readily react at room temperature and aryl chlorides at 50,°C. The highly enantiomerically enriched (up to 96,%,ee) 3-alkyl-3-aryloxindole products were obtained in generally high yields (>95,%) except in cases of steric congestion. The critical roles both of the bulky alkyl group and of the ortho -aryl substituent at the stereogenic center of the ligand were revealed in the crystal structure of a [Pd(,3 -allyl)(NHC-L*)(I)] complex. The ligand aryl location and orientation is fixed by conformational locking that minimizes A1,3 -strain and enables optimal transfer of chiral information. [source]


Direct Assignment of Enantiofacial Discrimination on Single Heterocyclic Substrates by Self-induced CD

CHEMISTRY - A EUROPEAN JOURNAL, Issue 6 2005
Carsten Siering
Abstract The first direct assignment of highly dynamic enantiofacial discrimination acting on a single heterocyclic substrate has been achieved by a combination of experimental and theoretical CD spectroscopy. The interaction of chirally modified hosts based on triphenylene ketals with appropriate prochiral guests can lead to the preferential formation of one diastereomeric host,guest complex. This reversible stereoselective binding transmits the chiral information from remote chiral groups in the host to the strongly absorbing triphenylene chromophore, which gives rise to self-induced CD. This effect was exploited for the determination of the enantiofacial recognition in various host,guest systems. Inversion of the steric demand either of the chiral substituents at the host or of the prochiral guest leads to almost complete inversion of the resulting CD spectra. For the assignment of the absolute stereochemistry of the complexes, a combined molecular dynamics/quantum-chemical approach was successfully employed. Despite the size and the highly dynamic character of the supramolecular systems, fundamental properties of the systems and details of the spectra were simulated accurately, providing access to fast and reliable assignment of the enantiofacial preference. The results are highly consistent with available X-ray data. [source]


Structure and chiroptical properties of supramolecular flower pigments

CHIRALITY, Issue 2 2006
George A. EllestadArticle first published online: 30 DEC 200
Abstract Research over the last 30 years has shown that at physiological concentrations of ca. 5 × 10,3 M, flower pigments composed of anthocyanins, either alone or complexed with flavone copigments, and frequently with metals, are self-assembled into non-covalent, chiral supramolecular complexes. This serves several biological functions including color stability, protection against UV radiation and provision for specific colors to attract insects for pollination. Self-association of the monomers takes place under conditions of molecular crowding by precise matching of the ,,, stacking interactions of the aromatic chromophores and intermolecular hydrogen bonding between the attached sugars. The resulting handedness is controlled by the chiral information provided by the sugars joined glycosidically at certain positions around the periphery of the aromatic nuclei. This review gives an overview of (i) the physicochemical evidence including circular dichroism, 1H NMR, and X-ray analysis for the structure and supramolecular chirality of these amphiphilic complexes, (ii) the role of the sugars on directing the chirality of the resulting supramolecules, (iii) the energetics of monomer association, and (iv) the possible influence of stacking chirality on insect pollination. © 2005 Wiley-Liss, Inc. Chirality 18:134,144, 2006. [source]