Home About us Contact | |||
Chinese Spring' (chinese + spring)
Selected AbstractsW55a Encodes a Novel Protein Kinase That Is Involved in Multiple Stress ResponsesJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 1 2009Zhao-Shi Xu Abstract Protein kinases play crucial roles in response to external environment stress signals. A putative protein kinase, W55a, belonging to SNF1-related protein kinase 2 (SnRK2) subfamily, was isolated from a cDNA library of drought-treated wheat seedlings. The entire length of W55a was obtained using rapid amplification of 5, cDNA ends (5,-RACE) and reverse transcription-polymerase chain reaction(RT-PCR). It contains a 1 029 -bp open reading frame (ORF) encoding 342 amino acids. The deduced amino acid sequence of W55a had eleven conserved catalytic subdomains and one Ser/Thr protein kinase active-site that characterize Ser/Thr protein kinases. Phylogenetic analysis showed that W55a was 90.38% homologous with rice SAPK1, a member of the SnRK2 family. Using nullisomic-tetrasomic and ditelocentric lines of Chinese Spring, W55a was located on chromosome 2BS. Expression pattern analysis revealed that W55a was upregulated by drought and salt, exogenous abscisic acid, salicylic acid, ethylene and methyl jasmonate, but was not responsive to cold stress. In addition, W55a transcripts were abundant in leaves, but not in roots or stems, under environmental stresses. Transgenic Arabidopsis plants overexpressing W55a exhibited higher tolerance to drought. Based on these findings, W55a encodes a novel dehydration-responsive protein kinase that is involved in multiple stress signal transductions. [source] Mass Production of Intergeneric Chromosomal Translocations through Pollen Irradiation of Triticum durum-Haynaldia villosa AmphiploidJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 11 2007Tong-De Bie Abstract Haynaldia villosa possesses a lot of important agronomic traits and has been a powerful gene resource for wheat improvement. However, only several wheat,H. villosa translocation lines have been reported so far. In this study, we attempted to develop an efficient method for inducing wheat,H. villosa chromosomal translocations. Triticum durum-Haynaldia villosa amphiploid pollen treated with 1 200 rad 60Co-,-rays was pollinated to Triticum aestivum cv. ,Chinese Spring'. Ninety-eight intergeneric translocated chromosomes between T. durum and H. villosa were detected by genomic in situ hybridization in 44 of 61 M1 plants, indicating a translocation occurrence frequency of 72.1%; much higher than ever reported. There were 26, 62 and 10 translocated chromosomes involving whole arm translocations, terminal translocations, and intercarlary translocations, respectively. Of the total 108 breakage-fusion events, 79 involved interstitial regions and 29 involved centric regions. The ratio of small segment terminal translocations (W·W-V) was much higher than that of large segment terminal translocations (W-V·V). All of the M1 plants were self-sterile, and their backcross progeny was all obtained with ,Chinese Spring' as pollen donors. Transmission analysis showed that most of the translocations were transmittable. This study provides a new strategy for rapid mass production of wheat-alien chromosomal translocations, especially terminal translocations that will be more significant for wheat improvement. [source] Fusarium head blight resistance derived from Lophopyrum elongatum chromosome 7E and its augmentation with Fhb1 in wheatPLANT BREEDING, Issue 5 2006X. Shen Abstract The objective of this study was to assess the effectiveness of Fusarium head blight (FHB) resistance derived from wheatgrass Lophopyrum elongatum chromosome 7E and to determine whether this resistance can augment resistance in combination with other FHB resistance quantitative trait loci (QTL) or genes in wheat. The ,Chinese Spring',Lophopyrum elongatum disomic substitution line 7E(7B) was crossed to three wheat lines: ,Ning 7840', L3, and L4. F2 populations were evaluated for type II resistance with the single-floret inoculation method in the greenhouse. Simple sequence repeat markers associated with Fhb1 in ,Ning 7840' and L4 and markers located on chromosome 7E were genotyped in each population. Marker,trait association was analysed with one-way or two-way analysis of variance. The research showed that, in the three populations, the average number of diseased spikelets (NDS) in plants with chromosome 7E is 1.2, 3.1 and 3.2, vs. NDS of 3.3, 7.2 and 9.1 in plants without 7E, a reduction in NDS of 2.1, 4.1 and 5.9 in the respective populations. The QTL on 7E and the Fhb1 gene augment disease resistance when combined. The effect of the QTL on 7E was greater than that on 3BS in this experiment. Data also suggest that the FHB resistance gene derived from L. elongatum is located on the long arm of 7E. [source] Evaluation of common wheat cultivars for tan spot resistance and chromosomal location of a resistance gene in the cultivar ,Salamouni'PLANT BREEDING, Issue 4 2006W. Tadesse Abstract A total of 50 wheat (Triticum aestivum L.) cultivars were evaluated for resistance to tan spot, using Pyrenophora tritici-repentis race 1 and race 5 isolates. The cultivars ,Salamouni', ,Red Chief', ,Dashen', ,Empire' and ,Armada' were resistant to isolate ASC1a (race 1), whereas 76% of the cultivars were susceptible. Chi-squared analysis of the F2 segregation data of hybrids between 20 monosomic lines of the wheat cultivar ,Chinese Spring' and the resistant cultivar ,Salamouni' revealed that tan spot resistance in ,Salamouni' was controlled by a single recessive gene located on chromosome 3A. This gene is designated tsn4. The resistant cultivars identified in this study are recommended for use in breeding programmes to improve tan spot resistance in common wheat. [source] Fluorescence in situ hybridization polymorphism using two repetitive DNA clones in different cultivars of wheatPLANT BREEDING, Issue 5 2003A. Schneider Abstract Twenty-two wheat cultivars and a wheat line were analysed with two-colour fluorescence in situ hybridization (FISH) using the pSc119.2 and pAs1 repetitive DNA clones to detect if polymorphism could be observed in the hybridization patterns of different wheat cultivars. The FISH hybridization pattern of ,Chinese Spring' was compared with wheat cultivars of different origins. Differences were observed in the hybridization patterns of chromosomes 4A, 5A, 1B, 2B, 3B, 5B, 6B, 7B, 1D, 2D, 3D and 4D. Although a low level of polymorphism exists in the FISH pattern of different wheat cultivars, it is possible to identify 17 pairs of chromosomes according to their hybridization patterns with these two probes. This study will help to predict the expected variation in the FISH pattern when analysing wheat genetic stocks of different origin. It is presumed that variation in hybridization patterns are caused by chromosome structural rearrangements and by differences in the amount and location of repetitive sequences in the cultivars analysed. [source] Effect of the ph1b mutant on chromosome pairing in hybrids between Dasypyrum villosum and Triticum aestivumPLANT BREEDING, Issue 4 2001M. Q. Yu Abstract Chromosome pairing was analysed in F1 hybrids of the wheat cultivar ,Chinese Spring' (CS) and its ph1b mutant (CSphlb) with Dasypyrum villosum. On average, 1.61 chromosomes per cell paired in the hybrid CS ×D. villosum, but 14.43 in the hybrid CS ph1b×D. villosum. Genomic fluorescence in situ hybridization (GISH) revealed three types of homoeologous association between wheat (W) and D. villosum (D) chromosomes (W-D, D-W-W and D-W-D) in pollen mother cells of the CS ph1b×D. villosum hybrid, and only one type (W-W), in the CS ×D. villosum hybrid. Both F1 hybrids were self-sterile. The seed set of the backcross of CS ×D. villosum with CS was 6.67% and that of CS ph1b×D. villosum with CS or CS ph1b was only 0.45%. The chromosome number of BC1 plants varied from 48 to 72. Translocations of chromosome segments or entire arms between wheat and D. villosum chromosomes were detected by GISH in the BC1 plants from the backcross of CS ph1b×D. villosum to CS ph1b. [source] |