Chemical Energy (chemical + energy)

Distribution by Scientific Domains


Selected Abstracts


Cardiac basal metabolism: energetic cost of calcium withdrawal in the adult rat heart

ACTA PHYSIOLOGICA, Issue 3 2010
P. Bonazzola
Abstract Aim:, Cardiac basal metabolism upon extracellular calcium removal and its relationship with intracellular sodium and calcium homeostasis was evaluated. Methods:, A mechano-calorimetric technique was used that allowed the simultaneous and continuous measurement of both heat rate and resting pressure in arterially perfused quiescent adult rat hearts. Using pharmacological tools, the possible underlying mechanisms related to sodium and calcium movements were investigated. Results:, Resting heat rate (expressed in mW g,1dry wt) increased upon calcium withdrawal (+4.4 ± 0.2). This response was: (1) unaffected by the presence of tetrodotoxin (+4.3 ± 0.6), (2) fully blocked by both, the decrease in extracellular sodium concentration and the increase in extracellular magnesium concentration, (3) partially blocked by the presence of either nifedipine (+2.8 ± 0.4), KB-R7943 (KBR; +2.5 ± 0.2), clonazepam (CLO; +3.1 ± 0.3) or EGTA (+1.9 ± 0.3). The steady heat rate under Ca2+ -free conditions was partially reduced by the addition of Ru360 (,1.1 ± 0.2) but not CLO in the presence of EGTA, KBR or Ru360. Conclusion:, Energy expenditure for resting state maintenance upon calcium withdrawal depends on the intracellular rise in both sodium and calcium. Our data are consistent with a mitochondrial Ca2+ cycling, not detectable under normal calcium diastolic levels. The experimental condition here analysed, partially simulates findings reported under certain pathological situations including heart failure in which mildly increased levels of both diastolic sodium and calcium have also been found. Therefore, under such pathological conditions, hearts should distract chemical energy to fuel processes associated with sodium and calcium handling, making more expensive the maintenance of their functions. [source]


Diversity of bacteriorhodopsins in different hypersaline waters from a single Spanish saltern

ENVIRONMENTAL MICROBIOLOGY, Issue 11 2003
R. Thane Papke
Summary Haloarchaeal rhodopsins are a diverse group of transmembrane proteins that use light energy to drive several different cellular processes. Two rhodopsins, bacteriorhodopsin and halorhodopsins, are H+ and Cl, ion pumps, respectively, and two rhodopsins, sensory rhodopsin I and II, regulate phototaxis. Bacteriorhodopsin is of special interest as it is a non-chlorophyll-based type of phototrophy (i.e. generation of chemical energy from light energy). However, very little is known about the diversity and distribution of rhodopsin genes in hypersaline environments. Here, we have used environmental PCR and cloning techniques to directly retrieve rhodopsin genes from three different salinity ponds located in a sea salt manufacturing facility near Alicante, Spain. Our survey resulted in the discovery of previously concealed variation including what is hypothesized to be bacteriorhodopsin genes from the uncultivated square morphotype that dominates these environments. In some instances, identical genes were discovered in seemingly different habitats suggesting that some haloarchaea are present over widely varying concentrations of salt. [source]


Heterointegration of Pt/Si/Ag Nanowire Photodiodes and Their Photocatalytic Properties

ADVANCED FUNCTIONAL MATERIALS, Issue 18 2010
Yongquan Qu
Abstract Photocatalyst mediated photoelectrochemical processes can make use of the photogenerated electrons and holes onsite for photocatalytic redox reactions, and enable the harness and conversion of solar energy into chemical energy, in analogy to natural photosynthesis. However, the photocatalysts available to date are limited by either poor efficiency in the visible light range or insufficient photoelectrochemical stability. Here, it is shown that a Pt/Si/Ag nanowire heterostructure can be rationally synthesized to integrate a nanoscale metal-semiconductor Schottky diode encased in a protective insulating shell with two exposed metal catalysts. The synthesis of Pt/Si/Ag nanowire diodes involves a scalable process including the formation of silicon nanowire array through wet chemical etching, electrodeposition of platinum and photoreduction of silver. The Pt/Si/Ag diodes exhibit highly efficient photocatalytic activity for a wide range of applications including environmental remediation and solar fuel production in the visible range. In this article, photodegradation of indigo carmine and 4-nitrophenol are used to evaluate the photoactivity of Pt/Si/Ag diodes. The Pt/Si/Ag diodes also show high activity for photoconversion of formic acid into carbon dioxide and hydrogen. [source]


Heterointegration of Pt/Si/Ag Nanowire Photodiodes and Their Photocatalytic Properties

ADVANCED FUNCTIONAL MATERIALS, Issue 18 2010
Yongquan Qu
Abstract Photocatalyst mediated photoelectrochemical processes can make use of the photogenerated electrons and holes onsite for photocatalytic redox reactions, and enable the harness and conversion of solar energy into chemical energy, in analogy to natural photosynthesis. However, the photocatalysts available to date are limited by either poor efficiency in the visible light range or insufficient photoelectrochemical stability. Here, it is shown that a Pt/Si/Ag nanowire heterostructure can be rationally synthesized to integrate a nanoscale metal-semiconductor Schottky diode encased in a protective insulating shell with two exposed metal catalysts. The synthesis of Pt/Si/Ag nanowire diodes involves a scalable process including the formation of silicon nanowire array through wet chemical etching, electrodeposition of platinum and photoreduction of silver. The Pt/Si/Ag diodes exhibit highly efficient photocatalytic activity for a wide range of applications including environmental remediation and solar fuel production in the visible range. In this article, photodegradation of indigo carmine and 4-nitrophenol are used to evaluate the photoactivity of Pt/Si/Ag diodes. The Pt/Si/Ag diodes also show high activity for photoconversion of formic acid into carbon dioxide and hydrogen. [source]


Artifical Muscles: Nanocomposite Hydrogel with High Toughness for Bioactuators (Adv. Mater.

ADVANCED MATERIALS, Issue 17 2009
17/2009)
The inside cover shows a nanofibrous hydrogel based on ferritin for a bioinspired nanocomposite actuator, reported in work by Seon Jeong Kim and co-workers on p. 1712. The ferritin-based nanofibrous hydrogels demonstrate synergy between the ferritin protein and a synthetic polymer matrix, as the protein shell of ferritin behaves like an elastic nanospring in the polymer. The actuator is reversibly actuated by chemical energy under external tensile stress, showing improved response speed in comparison to bulk and microfiber hydrogels, coming closer to the goal of mimicking the performance of natural muscle. [source]


System study on natural gas-based polygeneration system of DME and electricity

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 8 2008
Chen Bin
Abstract An innovative system for the polygeneration of dimethyl ether (DME) and electricity was proposed in this paper. The system uses natural gas as the raw material. Polygeneration is sequential, with one-step and once-through DME synthesis. Syngas is made to react to synthesize DME first, and then the residual syngas is sent to the power generation unit as fuel. The exergy analysis from the view of cascade utilization was executed for individual generation and for polygeneration. The analysis results showed that both chemical energy and thermal energy in polygeneration were effectively utilized, and both chemical exergy destruction and thermal exergy destruction in polygeneration were decreased. The cause of the decrease in exergy destruction was revealed. The analysis showed that hydrogen-rich (natural gas-based) polygeneration was as desirable as carbon-rich (coal-based) polygeneration. The energy saving ratio of polygeneration was about 10.2%, which demonstrated that high efficiency natural gas-based polygeneration is attainable, and the cascade utilizations of both chemical energy and thermal energy are key contributors to the improvement of performance. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Energy and exergy system analysis of thermal improvements of blast-furnace plants

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 2 2006
Andrzej Zi
Abstract The blast-furnace process dominating in the production of steel all over the world is still continuously improved due to its effectiveness (exergy efficiency is about 70%). The thermal improvement consist in an increase of the temperature of the blast and its oxygen enrichment, as well as the injection of cheaper auxiliary fuels. The main aim is to save coke because its consumption is the predominating item of the input energy both in the blast-furnace plant and in ironworks. Besides coke also other energy carriers undergo changes, like the consumption of blast, production of the chemical energy of blast-furnace gas, its consumption in Cowper-stoves and by other consumers, as well as the production of electricity in the recovery turbine. These changes affect the whole energy management of ironworks due to the close connections between energy and technological processes. That means the production of steam, electricity, compressed air, tonnage oxygen, industrial water, feed water undergo changes as well. In order to determine the system changes inside the ironworks a mathematical model of the energy management of the industrial plant was applied. The results of calculations of the supply of energy carriers to ironworks can then be used to determine the cumulative energy and exergy consumption basing on average values of cumulative energy and exergy indices concerning the whole country. Such a model was also used in the system analysis of exergy losses. Copyright © 2005 John Wiley & Sons, Ltd. [source]


The case for sequencing the genome of the electric eel Electrophorus electricus

JOURNAL OF FISH BIOLOGY, Issue 2 2008
J. S. Albert
A substantial international community of biologists have proposed the electric eel Electrophorus electricus (Teleostei: Gymnotiformes) as an important candidate for genome sequencing. In this study, the authors outline the unique advantages that a genome sequencing project of this species would offer society for developing new ways of producing and storing electricity. Over tens of millions of years, electric fish have evolved an exceptional capacity to generate a weak (millivolt) electric field in the water near their body from specialized muscle-derived electric organs, and simultaneously, to sense changes in this field that occur when it interacts with foreign objects. This electric sense is used both to navigate and orient in murky tropical waters and to communicate with other members of the same species. Some species, such as the electric eel, have also evolved a strong voltage organ as a means of stunning prey. This organism, and a handful of others scattered worldwide, convert chemical energy from food directly into workable electric energy and could provide important clues on how this process could be manipulated for human benefit. Electric fishes have been used as models for the study of basic biological and behavioural mechanisms for more than 40 years by a large and growing research community. These fishes represent a rich source of experimental material in the areas of excitable membranes, neurochemistry, cellular differentiation, spinal cord regeneration, animal behaviour and the evolution of novel sensory and motor organs. Studies on electric fishes also have tremendous potential as a model for the study of developmental or disease processes, such as muscular dystrophy and spinal cord regeneration. Access to the genome sequence of E. electricus will provide society with a whole new set of molecular tools for understanding the biophysical control of electromotive molecules, excitable membranes and the cellular production of weak and strong electric fields. Understanding the regulation of ion channel genes will be central for efforts to induce the differentiation of electrogenic cells in other tissues and organisms and to control the intrinsic electric behaviours of these cells. Dense genomic sequence information of E. electricus will also help elucidate the genetic basis for the origin and adaptive diversification of a novel vertebrate tissue. The value of existing resources within the community of electric fish research will be greatly enhanced across a broad range of physiological and environmental sciences by having a draft genome sequence of the electric eel. [source]


Chemical actuation in responsive hydrogels,

POLYMER INTERNATIONAL, Issue 3 2009
Joshua MG Swann
Abstract Chemically actuated hydrogels share a unique feature with living systems: they are both driven by their ability to convert chemical energy into a mechanical response. However, macroscopic applications of hydrogels are limited due to the slow response rate of these materials. This problem has been overcome by developing materials at micrometre length scales, as the diffusion kinetics are related to the square of the size of the smallest dimension of the gel. Herein, the progress in the field of chemical actuation in hydrogel systems is reviewed, with an emphasis on the ways in which new devices have been designed. Copyright © 2009 Society of Chemical Industry [source]


Artificial molecular-level machines

THE CHEMICAL RECORD, Issue 6 2001
Vincenzo Balzani
Abstract The concept of "machine" can be extended to the molecular level by designing supramolecular species capable of performing mechanical-like movements as a consequence of an appropriate energy supply. Molecular-level machines operate via electronic and nuclear rearrangements, for example, through some kind of chemical reaction. Like macroscopic machines, they are characterized by: (i) the kind of energy input supplied to make them work, (ii) the kind of movement performed by their components, (iii) the way in which their operation can be controlled and monitored, (iv) the possibility to repeat the operation at will and establish a cyclic process, (v) the time scale needed to complete a cycle of operation, and (vi) the function performed. A crucial issue is that concerning energy supply. Artificial machines powered by chemical energy ("fuels") produce waste products whose accumulation compromises the operation of the machine unless they are removed from the system. Photochemical and electrochemical energy inputs, however, can be used to make a machine work without formation of waste products. Examples of chemically, electrochemically, and photochemically powered machines investigated in our laboratory are reviewed, and future directions for the construction of novel machines are illustrated. The two most interesting kinds of applications of molecular-level machines are related to the mechanical aspect, which can be exploited, for example, for molecular-level transportation purposes, and the logic aspect, which can be exploited for information processing at the molecular level and, in the long run, for the construction of molecular level (chemical) computers. © 2001 John Wiley & Sons, Inc. and The Japan Chemical Journal Forum Chem Rec 1:422,435, 2001 [source]


Molecular Evidence that Phylogenetically Diverged Ciliates Are Active in Microbial Mats of Deep-Sea Cold-Seep Sediment

THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 1 2010
KIYOTAKA TAKISHITA
ABSTRACT. Cold seeps are areas of the seafloor where hydrogen sulfide- and methane-rich fluid seepage occurs, often sustaining chemosynthetic ecosystems. It is well known that both archaea and bacteria oxidize sulfides and methane to produce chemical energy and that several endemic animals use this energy to thrive in cold seeps. On the other hand, there is little knowledge regarding diversity and ecology of microbial eukaryotes in this ecosystem. In this study we isolated environmental RNA and DNA from microbial mats of cold-seep sediment in Sagami Bay, Japan, and retrieved eukaryotic small-subunit ribosomal RNA sequences with polymerase chain reaction methods followed by clone library construction. Most RNA-derived clones obtained were from ciliates, although DNA-derived clones were mainly from the fungus Cryptococcus curvatus, suggesting that ciliates are active in the environment. The ciliate sequences were phylogenetically diverse, and represented eight known class lineages as well as undesignated lineages. Because most ciliates are bacterivorous, it is highly likely that the ciliates for which sequences were recovered play a role in the food web of this ecosystem as grazers of microbial mats. In addition, given that the environment studied is under highly reduced (anoxic) conditions, based on the prokaryotic community structure deduced from T-RFLP profiles, the ciliates detected may be obligatory or facultative anaerobes. [source]


Is the efficiency of mammalian (mouse) skeletal muscle temperature dependent?

THE JOURNAL OF PHYSIOLOGY, Issue 19 2010
C. J. Barclay
Myosin crossbridges in muscle convert chemical energy into mechanical energy. Reported values for crossbridge efficiency in human muscles are high compared to values measured in vitro using muscles of other mammalian species. Most in vitro muscle experiments have been performed at temperatures lower than mammalian physiological temperature, raising the possibility that human efficiency values are higher than those of isolated preparations because efficiency is temperature dependent. The aim of this study was to determine the effect of temperature on the efficiency of isolated mammalian (mouse) muscle. Measurements were made of the power output and heat production of bundles of muscle fibres from the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles during isovelocity shortening. Mechanical efficiency was defined as the ratio of power output to rate of enthalpy output, where rate of enthalpy output was the sum of the power output and rate of heat output. Experiments were performed at 20, 25 and 30°C. Maximum efficiency of EDL muscles was independent of temperature; the highest value was 0.31 ± 0.01 (n= 5) at 30°C. Maximum efficiency of soleus preparations was slightly but significantly higher at 25 and 30°C than at 20°C; the maximum mean value was 0.48 ± 0.02 (n= 7) at 25°C. It was concluded that maximum mechanical efficiency of isolated mouse muscle was little affected by temperature between 20 and 30°C and that it is unlikely that differences in temperature account for the relatively high efficiency of human muscle in vivo compared to isolated mammalian muscles. [source]


Novel nickel-based catalyst for low temperature hydrogen production from methane steam reforming in membrane reformer

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 1 2010
Yazhong Chen
Abstract Hydrogen production from various hydrocarbon fuels, particularly biomass-derived fuels, has attracted worldwide attention due to its potential for application to fuel cells, a device which converts chemical energy into electricity efficiently and cleanly. However, current technology, such as natural gas steam reforming, could not meet the specific requirements of hydrogen for fuel cells. Therefore, novel processes are intensively investigated, aiming to develop economic and efficient ones for the specific purpose. An important direction is the integrated membrane reformer for one-step high-purity hydrogen production. However, for the commercial realization of this technology, there are still some difficulties to overcome. By comparison with previous investigations with a similar membrane, this work showed that catalyst also played an important role in determining membrane reformer performance. We proposed that when thickness of membrane was several micrometers, the permeance of membrane became less important than the kinetics of catalyst, due to the fact that under such conditions, hydrogen permeation rate was faster than the kinetics of steam reforming reaction when commercial catalyst was applied, but further evidence is indispensable. In this initial work, we focused on developing efficient nickel catalyst for low temperature steam reforming. Nickel-based catalyst was developed by deposition,coprecipitation and used as pre-reduced, showing high performance for methane steam reforming at low temperatures and good durability, which may find practical application for the integrated membrane reforming process. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]