Home About us Contact | |||
Characterization Techniques (characterization + techniques)
Kinds of Characterization Techniques Selected AbstractsInfluence of the substrate temperature on the structural, optical, and electrical properties of tin selenide thin films deposited by thermal evaporation methodCRYSTAL RESEARCH AND TECHNOLOGY, Issue 1 2010N. Kumar Abstract Thin films of tin selenide (SnSe) were deposited on sodalime glass substrates, which were held at different temperatures in the range of 350-550 K, from the pulverized compound material using thermal evaporation method. The effect of substrate temperature (Ts) on the structural, morphological, optical, and electrical properties of the films were investigated using x-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission measurements, and Hall-effect characterization techniques. The temperature dependence of the resistance of the films was also studied in the temperature range of 80-330 K. The XRD spectra and the SEM image analyses suggest that the polycrystalline thin films having uniform distribution of grains along the (111) diffraction plane was obtained at all Ts. With the increase of Ts the intensity of the diffraction peaks increased and well-resolved peaks at 550 K, substrate temperature, were obtained. The analysis of the data of the optical transmission spectra suggests that the films had energy band gap in the range of 1.38-1.18 eV. Hall-effect measurements revealed the resistivity of films in the range 112-20 , cm for films deposited at different Ts. The activation energy for films deposited at different Ts was in the range of 0.14 eV-0.28 eV as derived from the analysis of the data of low-temperature resistivity measurements. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Vibrational, optical and microhardness studies of trimethoprim DL -malateCRYSTAL RESEARCH AND TECHNOLOGY, Issue 12 2009S. Franklin Abstract Trimethoprim malate, an organic crystal, has been synthesized using slow evaporation method from its aqueous solution. Structural, optical and the mechanical properties of the grown crystal have been investigated by various characterization techniques which include FTIR spectra, single crystal XRD, UV-Vis spectra and Vickers microhardness testing. The structure of the compound predicted by analysing the recorded FTIR spectrum compliments the structure determined using single crystal X-ray diffraction. Single crystal X-ray diffraction study reveals that the crystals are monoclinic [P21/c, a=12.9850 Å, b=9.3038 Å, c=15.6815 Å and ,=111.065°]. The UV-Vis spectrum exhibits maximum transparency (98%) for a wide range suggesting the suitability of the title compound for optical applications. The optical constants have been calculated and illustrated graphically. Microhardness tests have been performed on the cystal under study and the Vicker hardness number has been calculated. The work hardening coefficient is found to be 2.85 which suggest that the crystal belongs to the family of soft materials. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Formation of Oxynitride as the Photocatalytic Enhancing Site in Nitrogen-Doped Titania Nanocatalysts: Comparison to a Commercial Nanopowder,ADVANCED FUNCTIONAL MATERIALS, Issue 1 2005X. Chen Abstract A nitrogen-doped TiO2 nanocolloid has been successfully prepared and its properties compared with the commercially available TiO2 nanomaterial, Degussa P25. Several characterization techniques, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron spectroscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, Raman scattering, and UV-visible reflectance spectra, are combined in order to determine the crystal phase and grain size, shape, degree of nitrogen incorporation, and nature of the resultant oxynitride chemical bonding on the surface and in the bulk. The high relative photocatalytic activity of the nitrogen doped-TiO2 nanocolloid is evaluated through a study of the decomposition of methylene blue under visible light excitation. The ease and degree of substitutional-insertional nitrogen doping is held accountable for the significant increase in photocatalytic activity in the porous nanocolloid versus the nitrided commercial nanopowder. It is suggested that the nitrogen incorporation produces an NO bonding region as evidenced by the resulting XPS spectrum. [source] Advanced silicon microstructures, sensors, and systemsIEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, Issue 3 2007Oliver Paul Non-Member Abstract This paper presents the progress in silicon-based biomedical microstructures, material characterization techniques, and mechanical microsystems by the authors' research team. Microneedle and microelectrode arrays with fluidic through-wafer vias and electrical contacts were developed. The structures are designed for dermatological and biological applications such as allergy testing, surface electromyography, and spatially resolved impedance spectroscopy. The characterization of thin films has relied on the bulge test. By the formulation of more powerful models, the application range of the bulge test was extended to elastically supported thin-film multilayers. This enables the mechanical properties of thin films to be determined reliably. Finally, progress in the operation and application of novel stress sensors based on CMOS diffusions and field effect transistors and exploiting the pseudo-Hall effect is reported. Their integration into powerful single-chip microsystems is described. Applications include stress mapping, force and torque measurements, and tactile surface probing of microcomponents. Copyright © 2007 Institute of Electrical Engineers of Japan© 2007 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. [source] Structure,Property Relation of SrTiO3/LaAlO3 InterfacesADVANCED MATERIALS, Issue 17 2009Mark Huijben Abstract A large variety of transport properties have been observed at the interface between the insulating oxides SrTiO3 and LaAlO3 such as insulation, 2D interface metallicity, 3D bulk metallicity, magnetic scattering, and superconductivity. The relation between the structure and the properties of the SrTiO3/LaAlO3 interface can be explained in a meaningful way by taking into account the relative contribution of three structural aspects: oxygen vacancies, structural deformations (including cation disorder), and electronic interface reconstruction. The emerging phase diagram is much richer than for related bulk oxides due to the occurrence of interface electronic reconstruction. The observation of this interface phenomenon is a display of recent advances in thin film deposition and characterization techniques, and provides an extension to the range of exceptional electronic properties of complex oxides. [source] Automated classification of crystallization experiments using wavelets and statistical texture characterization techniquesJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 1 2008D. Watts A method is presented for the classification of protein crystallization images based on image decomposition using the wavelet transform. The distribution of wavelet coefficient values in each sub-band image is modelled by a generalized Gaussian distribution to provide discriminatory variables. These statistical descriptors, together with second-order statistics obtained from joint probability distributions, are used with learning vector quantization to classify protein crystallization images. [source] Use of RAPD and killer toxin sensitivity in Saccharomyces cerevisiae strain typingJOURNAL OF APPLIED MICROBIOLOGY, Issue 3 2005L. Corte Abstract Aims:, Two different strain characterization techniques, random amplified polymorphic DNA (RAPD) and killer toxin sensitivity (KTS), were compared to assess their typing performance using a set of 30 certified Saccharomyces cerevisiae strains. Methods and Results:, A sequential random resampling procedure was employed to subdivide the 32 descriptors in eight sets, in order to compare the differential performances of the two techniques with diverse number of characters. Results showed that RAPD performs better than killer, although the complete differentiation of the strains under study could be obtained only by combining profiles from the two techniques Conclusions:, The combination of different typing techniques was useful when discriminating similar organisms. In such cases, the introduction of a second typing technique can be more advantageous than increasing the number of characters obtained with a single method. Significance and Impact of the Study:, The distribution of among-strains pairwise distances and the relative performance of the two techniques has implications for the study of biodiversity, taxonomy and microbial ecology. [source] Structural determination of ethylene-propylene-diene rubber (EPDM) containing high degree of controlled long-chain branchingJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2009Susanta Mitra Abstract This work highlights an attempt to characterize the degree and nature of long-chain branching (LCB) in an unknown sample of ethylene-propylene-diene rubber (EPDM). Two EPDM rubbers selected for this study were comparable in comonomer compositions but significantly different with respect to molar mass and the presence of LCB. Both rubbers contained 5-ethylidene-2-norbornene (ENB) as diene. Solution cast films of pure EPDM samples were used for different characterization techniques. 1H-NMR, and 13C-NMR were used for assessing the comonomer ratios and LCB. Size exclusion chromatography (SEC) equipped with triple detector system was used to determine the molar mass (both absolute and relative) and polydispersity index (PDI). Presence of branching was also detected using sec-viscometry. Rheological analysis has also been used for characterizing LCB. Finally, on the basis of the experimental findings and the available theories, an attempt was made to identify the chemical nature and degree of LCB. This study reveals the possibility of detailed characterization of molecular architecture of EPDM containing LCB by comparing with an essentially linear EPDM in light of an existing theory. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] Modification induced by alpha particle irradiationin Makrofol polycarbonateJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008S. A. Nouh Abstract Makrofol DE 1-1 CC polycarbonate samples were exposed to alpha particles of initial energies at levels between 5.1 and 34 MeV. The modifications induced in polycarbonate samples due to the alpha particle irradiation have been studied through different characterization techniques such as X-ray diffraction (XRD), infrared spectroscopy, intrinsic viscosity, and color difference studies. The infrared spectroscopy indicated that the intensities of the characteristic absorption bands decrease with increasing the deposited alpha energy in the range 5.1,8.4 MeV, indicating that the degradation is the dominant mechanism at this range. At the same time, an increase in the OH groups was observed at the same energy range 5.1,8.4 MeV due to the degradation of carbonate group and the H abstraction from the polymer backbone to form hydroxyl groups. The degradation reported by IR spectroscopy enhanced the degree of ordering in the degraded samples as revealed by XRD technique. Additionally, this degradation decreases the intrinsic viscosity from 0.56 to 0.43 at 35°C, indicating a decrease in the average molecular mass. The non irradiated Polycarbonate polymer is nearly colorless. It showed significant darkness sensitivity towards alpha particle irradiation, indicated by an increase in the color intercept L* from 33.6 to 36.7. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Radiopaque, barium sulfate-filled biomedical compounds of a poly(ether-block-amide) copolymerJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008Xiaoping Guo Abstract Various radiopaque compounds of a poly (ether- block -amide) copolymer resin filled with fine barium sulfate particles were prepared by melt mixing. Material properties of the filled compounds were investigated using various material characterization techniques, including thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic rheometry, uniaxial tensile test, and dynamic mechanical thermal analysis (DMTA). The effects of the filler and its concentration on the measured material properties are evaluated. It has been found that in addition to its well-known X-ray radiopacity, the filler is quite effective in reinforcing some mechanical properties of the copolymer, including modulus of elasticity and yield strength. More interestingly, it has been observed that at low loading concentrations near 10 wt %, the filler may also act as a rigid, inorganic toughener for the copolymer by improving the postyield material extensibility of strain hardening against ultimate material fracture. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Molecular imaging: The latest generation of contrast agents and tissue characterization techniquesJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2003Francis G. BlankenbergArticle first published online: 25 AUG 200 Abstract Molecular Imaging technologies will have a profound impact on both basic research and clinical imaging in the near future. As the field covers many different specialties and scientific disciplines it is not possible to review all in a single article. In the current article we will turn our attention to those modalities that are either currently in use or in development for the medical imaging clinic. © 2003 Wiley-Liss, Inc. [source] Effect of supercritical deposition synthesis on dibenzothiophene hydrodesulfurization over NiMo/Al2O3 nanocatalystAICHE JOURNAL, Issue 10 2009Mehrdad Alibouri Abstract The synthesis of two NiMo/Al2O3 catalysts by the supercritical carbon dioxide/methanol deposition (NiMo-SCF) and the conventional method of wet coimpregnation (NiMo-IMP) were conducted. The results of the physical and chemical characterization techniques (adsorption,desorption of nitrogen, oxygen chemisorption, XRD, TPR, TEM, and EDAX) for the NiMo-SCF and NiMo-IMP demonstrated high and uniform dispersed deposition of Ni and Mo on the Al2O3 support for the newly developed catalyst. The hydrodesulfurization (HDS) of fuel model compound, dibenzothiophene, was used in the evaluation of the NiMo-SCF catalyst vs. the commercial catalyst (NiMo-COM). Higher conversion for the NiMo-SCF catalyst was obtained. The kinetic analysis of the reaction data was carried out to calculate the reaction rate constant of the synthesized and commercial catalysts in the temperature rang of 543,603 K. Analysis of the experimental data using Arrhenius' law resulted in the calculation of frequency factor and activation energy of the HDS for the two catalysts. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Tandem mass spectrometry of synthetic polymersJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 9 2009Anna C. Crecelius Abstract The detailed characterization of macromolecules plays an important role for synthetic chemists to define and specify the structure and properties of the successfully synthesized polymers. The search for new characterization techniques for polymers is essential for the continuation of the development of improved synthesis methods. The application of tandem mass spectrometry for the detailed characterization of synthetic polymers using the soft ionization techniques matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and electrospray ionization mass spectrometry (ESI-MS), which became the basic tools in proteomics, has greatly been increased in recent years and is summarized in this perspective. Examples of a variety of homopolymers, such as poly(methyl methacrylate), poly(ethylene glycol), as well as copolymers, e.g. copolyesters, are given. The advanced mass spectrometric techniques described in this review will presumably become one of the basic tools in polymer chemistry in the near future. Copyright © 2009 John Wiley & Sons, Ltd. [source] Characterization of dilute species within CVD-grown silicon nanowires doped using trimethylboron: protected lift-out specimen preparation for atom probe tomographyJOURNAL OF MICROSCOPY, Issue 2 2010T. J. PROSA Summary Three-dimensional quantitative compositional analysis of nanowires is a challenge for standard techniques such as secondary ion mass spectrometry because of specimen size and geometry considerations; however, it is precisely the size and geometry of nanowires that makes them attractive candidates for analysis via atom probe tomography. The resulting boron composition of various trimethylboron vapour,liquid,solid grown silicon nanowires were measured both with time-of-flight secondary ion mass spectrometry and pulsed-laser atom probe tomography. Both characterization techniques yielded similar results for relative composition. Specialized specimen preparation for pulsed-laser atom probe tomography was utilized and is described in detail whereby individual silicon nanowires are first protected, then lifted out, trimmed, and finally wet etched to remove the protective layer for subsequent three-dimensional analysis. [source] Transesterification of dimethyl oxalate with phenol over TiO2/SiO2: Catalyst screening and reaction optimizationAICHE JOURNAL, Issue 12 2008Xia Yang Abstract Physicochemical properties of silica-supported titanium oxide catalysts as well as their performances for transesterification of dimethyl oxalate (DMO) with phenol to methyl phenyl oxalate (MPO) and diphenyl oxalate (DPO) have been investigated systematically. Various wt % of TiO2 were loaded on SiO2 by a two-step wet impregnation method. The surface properties of TiO2/SiO2 catalysts were explored by various characterization techniques (BET, SEM, ICP, XPS, XRD, FTIR of pyridine adsorption, and NH3 -TPD). Catalytic performances of TiO2/SiO2 catalysts were found to be strongly dependent on TiO2 dispersion and surface acidity. Monolayer dispersion capacity of TiO2 on silica was estimated to be about 4.0 TiO2 molecules per nm2 (SiO2) and no crystalline TiO2 was detected at TiO2 loading less than 12 wt %. FTIR and TPD analysis suggested that weak Lewis acid sites on the surface of TiO2/SiO2 were responsible for their unique selectivity to the target products, MPO and DPO. An optimization of reaction conditions for the transesterification of DMO with phenol was performed over 12 wt % TiO2/SiO2 calcined at 550°C. In addition, we studied the disproportionation reaction from MPO to DPO via a catalytic distillation process, which is highly efficient to promote formation of the desired DPO. © 2008 American Institute of Chemical Engineers AIChE J, 2008 [source] Synthesis and properties of mesogen-jacketed liquid crystalline polymers containing bistolane mesogenJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 21 2010Zhen Lin Zhang Abstract On the basis of the concept of mesogen-jacketed liquid crystalline polymers, a series of new methacrylate monomers, (2,5- bis[2-(4,-alkoxyphenyl) ethynyl] benzyl methacrylate (MACn, n = 4, 6, 8, 10, and 12) and 2,5- bis[2-(6,-decanoxynaphthyl) ethynyl] benzyl methacrylate (MANC10), and their polymers, PMACn (n = 4, 6, 8, 10, and 12) and PMANC10 were synthesized. The bistolane mesogen with large ,-electron conjugation were side-attached to the polymer backbone via short linkages. Various characterization techniques such as differential scanning calorimetry, wide-angle X-ray diffraction, and polarized light microscopy were used to study their mesomorphic phase behavior. The polymer PMACn with shorter flexible substituents (n = 4) forms the columnar nematic (,N) phase, but other polymers with longer flexible tails (n = 6, 8, 10, and 12) can develop into a smetic A (SA) phase instead of a ,N phase. The PMANC10 containing naphthyl can also form a well-defined SA phase. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010 [source] Effect of pH on the Carbonate Incorporation into the Hydroxyapatite Prepared by an Oxidative Decomposition of Calcium,EDTA ChelateJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 1 2008Yusuf Yusufoglu In this study, the carbonate incorporation into the hydroxyapatite (HAp) lattice under various pH conditions was investigated. Crystalline-sodium and carbonate-containing calcium HAp (NaCO3HAp) powders were prepared using an oxidative decomposition of calcium,EDTA chelates in a sodium phosphate solution with hydrogen peroxide. The powders obtained were characterized by X-ray diffraction, infrared spectroscopy, thermal gravimetric analysis, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and elemental analysis. Depending on pH, spherical particles approximately 3.5 ,m in diameter or hexagonal prismatic particles measuring 3,9 ,m in length were obtained. Various characterization techniques showed that the precipitates were a single-phase NaCO3HAp. The carbonate content and the lattice parameters of the HAp were a function of solution pH. Maximum carbonate incorporated into the HAp lattice was at pH=10, corresponding to lattice parameters of a=0.93880 nm and c=0.69070 nm. Furthermore, spectroscopic analyses indicate that the as-prepared samples are B-type carbonated HAp, in which carbonate ions occupy the phosphate sites. After heat treatment at 965°C, most of the carbonate is removed from the HAp lattice. [source] Microwave-Assisted Combustion Synthesis of Tantalum Nitride in a Fluidized BedJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2003Akhil Jain Combustion synthesis experiments in a fluidized bed have been conducted using nitrogen as the fluidizing gas for the formation of transition-metal nitrides that are potential replacements for traditional hydrodenitrogenation and hydrodesulfurization catalysts. The microwave-assisted ignition of reaction has been investigated for its potential to produce nitride overlayers on two different sizes of tantalum particle substrates. Various characterization techniques,X-ray diffractometry, energy dispersive spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy,have been used to study the presence of nitride overlayers. The results indicate that microwave assistance can permit controlled formation of tantalum nitride (Ta2N) overlayers. [source] Simulation of Crystallization Analysis Fractionation (Crystaf) of Linear Olefin Block CopolymersMACROMOLECULAR SYMPOSIA, Issue 1 2009Siripon Anantawaraskul Abstract Summary: Linear olefin block copolymers (OBCs) have microstructures that are unique among polyolefins and exhibit properties that are different from those of other polyolefin elastomers. Characterizing their chain microstructures is a challenging task, as conventional characterization techniques cannot probe directly block length distribution or composition. In this work, we used a Monte Carlo model to predict the microstructure details of OBCs and a modified version of the Crystaf model previously developed in our groups to describe theoretical Crystaf profiles for model OBCs. This model can be used as a tool to interpret Crystaf results of these interesting new polyolefins and to relate them to OBC microstructures. Effects of polymerization parameters on OBC microstructure and Crystaf profiles were also discussed. [source] Synthesis of dendrimer,carbon nanotube conjugatesPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 6 2008A. García Abstract We describe the coupling between Carbon Nanotubes (CNTs) and a second-generation cyanophenyl-based dendrimer. The goal of our work is the synthesis of highly functionalized CNTs without provoking damage to the conjugated ,-system. One approach is the attachment of dendrimers with a high density of functional groups to the CNTs. These groups serve as anchor points for further reactions. With this aim, we have carried out a primary modification on CNTs by the use of 1,3 dipolar cycloaddition reaction. We have employed Single Wall Carbon Nanotubes (SWNTs) as well as Multi Wall Carbon Nanotubes (MWNTs) obtaining 238 ,mol and 511 ,mol of pyrrolidine groups per gram, respectively. The amount of amino groups introduced in the system was measured by the Kaiser test as well as thermogravimetric analyses. As a second step, dendrimer incorporation was performed by carbodiimide chemistry. Thermogravimetric Analysis, Raman Spectroscopy and Atomic Force Microscopy characterization techniques are reported for the characterization of the final CNT,dendrimer conjugate. The results show that the dendrimer has been attached covalently to the previously generated amine groups. Morphologically, the attached dendrimer with an estimated theoretical molecular length of 6.4 nm, generates a wrapping of 8 nm thick around the CNTs walls. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] GaN/AlN super-lattice structures on vicinal sapphire (0001) substrates grown by rf-MBEPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 7 2005X.Q. Shen Abstract GaN/AlN super-lattice structures (SLs) grown on the vicinal sapphire (0001) substrates by rf-MBE are investigated using various characterization techniques. The satellite XRD diffraction peaks originating from the SLs are clearly observed, which indicate an abrupt interface and good periodicity of the SLs. Cross-sectional TEM observations show differnet features of SLs grown on the various vicinal substrates, depending on whether macro-steps form on the surface or not. DUV-Raman measurements show unique spectra from the SLs, which are different from the usual GaN and AlN films. The usage of a proper vicinal substrate angle shows a great merit to obtain high quality GaN/AlN SLs. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Free-Standing HVPE-GaN Quasi-Substrates: Impurity and Strain DistributionsPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 1 2003T. Paskova Abstract We report a study of the physical properties of free-standing HVPE-GaN quasi-substrates. A variety of characterization techniques was employed in order to characterise in a comparative way the two sides of the films. The as-grown Ga-face was found to have lower density of both, structural and impurity defects. This leads to a lower concentration of free carriers and residual strain in the Ga-face compared to that in the N-face. The optical properties were found to be strongly influenced by the specific defect structure in both faces. [source] Structural, thermal, micromechanical and electrical study of polyimide composite thin films incorporating indium tin oxidePOLYMER INTERNATIONAL, Issue 9 2010Anand Kumar Gupta Abstract Studies of composite films incorporating inorganic materials are of immense importance for current technological applications. Polyimide (PI) composite thin films incorporating indium tin oxide (ITO) at various weight ratios were processed using an in situ generation approach. The resultant product was imidized up to 350 °C to test the ability of the material to endure high temperatures without affecting the host matrix. The morphological behaviour of the PI/ITO composite films was investigated using Fourier transform infrared, scanning electron microscopy and atomic force microscopy characterization techniques. The degrees of crystallinity and ITO particle size within the PI matrix were studied using X-ray diffraction. The thermal, structural and electrical properties were analysed using thermogravimetric analysis, differential scanning calorimetry, UV-visible spectroscopy and the four-probe technique. The micromechanical properties of the composites were evaluated in terms of tensile strength, tensile modulus and elongation. An overall improvement in the properties of the composite films was observed in comparison to those of pure PI. The synergistic improvement in the composite films is associated with the interaction mechanism between ITO and PI, where ITO becomes dispersed and interacts within the PI matrix. This leads to a decrease in available free-space volume and increases the surface enrichment providing reinforcement to the matrix. Copyright © 2010 Society of Chemical Industry [source] Preparation and characterization of ultrafine electrospun polyacrylonitrile fibers and their subsequent pyrolysis to carbon fibersPOLYMER INTERNATIONAL, Issue 8 2006Juthawan Sutasinpromprae Abstract The present contribution reports the fabrication and characterization of ultrafine polyacrylonitrile (PAN) fibers by electrospinning and further development of the as-spun PAN fibers into ultrafine carbon fibers. The effects of solution conditions (i.e., solution concentration, viscosity, conductivity, and surface tension) and process parameters (i.e., applied electrostatic field strength, emitting electrode polarity, nozzle diameter, and take-up speed of a rotating-drum collector) on morphological appearance and average diameter of the as-spun PAN fibers were investigated by optical scanning (OS) and scanning electron microscopy (SEM). The concentration, and hence the viscosity, of the spinning solutions significantly affected the morphology and diameters of the as-spun PAN fibers. The applied electrostatic field strength and nozzle diameter slightly affected the diameters of the as-spun fibers, while the emitting electrode polarity did not show any influence over the morphology and size of the as-spun fibers. Utilization of the rotating-drum collector enhanced the alignment of the as-spun fibers. Within the investigated concentration range, the average diameter of the fibers ranged between 80 and 725 nm. Finally, heat treatment of the as-spun fibers with their average diameter of about 450 nm was carried out at 230 and 1000 °C, respectively. Various characterization techniques revealed successful conversion into carbon fibers with an average diameter of about 250 nm. Copyright © 2006 Society of Chemical Industry [source] Response of a concentrated monoclonal antibody formulation to high shearBIOTECHNOLOGY & BIOENGINEERING, Issue 5 2009Jared S. Bee Abstract There is concern that shear could cause protein unfolding or aggregation during commercial biopharmaceutical production. In this work we exposed two concentrated immunoglobulin-G1 (IgG1) monoclonal antibody (mAb, at >100 mg/mL) formulations to shear rates between 20,000 and 250,000 s,1 for between 5 min and 30 ms using a parallel-plate and capillary rheometer, respectively. The maximum shear and force exposures were far in excess of those expected during normal processing operations (20,000 s,1 and 0.06 pN, respectively). We used multiple characterization techniques to determine if there was any detectable aggregation. We found that shear alone did not cause aggregation, but that prolonged exposure to shear in the stainless steel parallel-plate rheometer caused a very minor reversible aggregation (<0.3%). Additionally, shear did not alter aggregate populations in formulations containing 17% preformed heat-induced aggregates of a mAb. We calculate that the forces applied to a protein by production shear exposures (<0.06 pN) are small when compared with the 140 pN force expected at the air,water interface or the 20,150 pN forces required to mechanically unfold proteins described in the atomic force microscope (AFM) literature. Therefore, we suggest that in many cases, air-bubble entrainment, adsorption to solid surfaces (with possible shear synergy), contamination by particulates, or pump cavitation stresses could be much more important causes of aggregation than shear exposure during production. Biotechnol. Bioeng. 2009;103: 936,943. © 2009 Wiley Periodicals, Inc. [source] Spectroscopic Characteristics of Differently Produced Single-Walled Carbon NanotubesCHEMPHYSCHEM, Issue 13 2009Zhongrui Li Prof. Dr. Abstract Single-walled carbon nanotubes (SWNTs) synthesized with different methods are investigated by using multiple characterization techniques, including Raman scattering, optical absorption, and X-ray absorption near edge structure, along with X-ray photoemission by following the total valence bands and C 1s core-level spectra. Four different SWNT materials (produced by arc discharge, HiPco, laser ablation, and CoMoCat methods) contain nanotubes with diameters ranging from 0.7 to 2.8 nm. The diameter distribution and the composition of metallic and semiconducting tubes of the SWNT materials are strongly affected by the synthesis method. Similar sp2 hybridization of carbon in the oxygenated SWNT structure can be found, but different surface functionalities are introduced while the tubes are processed. All the SWNTs demonstrate stronger plasmon resonance excitations and lower electron binding energy than graphite and multiwalled carbon nanotubes. These SWNT materials also exhibit different valence-band X-ray photoemission features, which are considerably affected by the nanotube diameter distribution and metallic/semiconducting composition. [source] Experimental and Theoretical Investigation of the Room-Temperature Photoluminescence of Amorphized Pb(Zr,Ti)O3CHEMPHYSCHEM, Issue 8 2005Emmanuelle Orhan Dr. Abstract Ultrafine PbZr0.20Ti0.80O3 was amorphized through high-energy mechanical milling. The structural evolution through the amorphization process was accompanied by various characterization techniques, such as X-ray diffraction, Fourier-transformed IR spectroscopy (FTIR), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy. A strong photoluminescence was measured at room temperature for amorphized PbZr0.20Ti0.80O3, and interpreted by means of high-level quantum mechanical calculations in the density functional theory framework. Three periodic models were used to represent the crystalline and amorphized PbZr0.20Ti0.80O3, and they allowed the calculation of electronic properties that are consistent with the experimental data and that explain the appearance of photoluminescence. [source] |