Home About us Contact | |||
Charpy Impact Strength (charpy + impact_strength)
Selected AbstractsMechanical and thermal properties of polypropylene/sugarcane Bagasse compositesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2007B. Ramaraj Abstract To determine the possibility of using sugarcane bagasse (SCB) waste as reinforcing filler in the thermoplastic polymer matrix, SCB-reinforced polypropylene (PP) composites were prepared. The PP and SCB composites were prepared by the extrusion of PP resin with 5, 10, 15, and 20 wt % of SCB filler in a corotating twin screw extruder. The extruded strands were cut into pellets and injection molded to make test specimens. These specimens were tested for physicomechanical properties such as tensile, flexural, Izod, and Charpy impact strengths, density, water absorption, and thermal characteristics, namely, heat deflection temperature (HDT), melt flow index, and thermogravimetric analysis. It was found that the flexural strength increased from 23.66 to 26.84 MPa, Izod impact strength increased from 10.499 to 13.23 Kg cm/cm, Charpy impact strength increased from 10.096 to 13.98 Kg cm/cm, and HDT increased from 45.5 to 66.5°C, with increase in filler loading from 5 to 20% in the PP matrix. However, the tensile strength and elongation decreased from 32.22 to 27.21 MPa and 164.4 to 11.20% respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3827,3832, 2007 [source] Novel Thermoplastic Composites from Commodity Polymers and Man-Made Cellulose FibersMACROMOLECULAR SYMPOSIA, Issue 1 2006Hans-Peter Fink Abstract Summary: A new class of fibre reinforced commodity thermoplastics suited for injection moulding and direct processing applications has been developed using man-made cellulosic fibres (Rayon tire yarn, Tencel, Viscose, Carbacell) and thermoplastic commodity polymers, such as polypropylene (PP), polyethylene (PE), high impact polystyrene (HIPS), poly(lactic acid) (PLA), and a thermoplastic elastomer (TPE) as the matrix polymer. For compounding, a specially adapted double pultrusion technique has been employed which provides composites with homogeneously distributed fibres. Extensive investigations were performed with Rayon reinforced PP in view of applications in the automotive industry. The Rayon-PP composite is characterized by high strength and an excellent impact behaviour as compared with glass fibre reinforced PP, thus permitting applications in the field of engineering thermoplastics such as polycarbonate/acrylonitrile butadiene styrene blends (PC/ABS). With the PP based composites the influence of material parameters (e.g. fibre type and load, coupling agent) were studied and it has been demonstrated how to tailor the desired composite properties as modulus and heat distortion temperature (HDT) by varying the fibre type or adding inorganic fillers. Man-made cellulose fibers are also suitable for the reinforcement of further thermoplastic commodity polymers with appropriate processing temperatures. In case of PE modulus and strength are tripled compared to the neat resin while Charpy impact strength is increased five-fold. For HIPS mainly strength and stiffness are increased, while for TPE the property profile is changed completely. With Rayon reinforced PLA, a fully biogenic and biodegradable composite with excellent mechanical properties including highly improved impact strength is presented. [source] Cover Picture: Structural Modifications to Polystyrene via Self-Assembling Molecules (Adv. Funct.ADVANCED FUNCTIONAL MATERIALS, Issue 3 2005Mater. Abstract The cover shows tensile failure of a sample of pure polystyrene (left), and a polystyrene sample with greater impact strength containing 1% by weight of dispersed nanoribbons (right), as reported in work by Stupp and co-workers on p.,487. The nanoribbons are formed by self-assembly of molecules known as dendron rodcoils (DRCs) in styrene monomer, resulting in the formation of a gel. This gel can then be polymerized thermally. We have previously reported that small quantities of self-assembling molecules known as dendron rodcoils (DRCs) can be used as supramolecular additives to modify the properties of polystyrene (PS). These molecules spontaneously assemble into supramolecular nanoribbons that can be incorporated into bulk PS in such a way that the orientation of the polymer is significantly enhanced when mechanically drawn above the glass-transition temperature. In the current study, we more closely evaluate the structural role of the DRC nanoribbons in PS by investigating the mechanical properties and deformation microstructures of polymers modified by self-assembly. In comparision to PS homopolymer, PS containing small amounts (,,1.0,wt.-%) of self-assembling DRC molecules exhibit greater Charpy impact strengths in double-notch four-point bending and significantly greater elongations to failure in uniaxial tension at 250,% prestrain. Although the DRC-modified polymer shows significantly smaller elongations to failure at 1000,% prestrain, both low- and high-prestrain specimens maintain tensile strengths that are comparable to those of the homopolymer. The improved toughness and ductility of DRC-modified PS appears to be related to the increased stress whitening and craze density that was observed near fracture surfaces. However, the mechanism by which the self-assembling DRC molecules toughen PS is different from that of conventional additives. These molecules assemble into supramolecular nanoribbons that enhance polymer orientation, which in turn modifies crazing patterns and improves impact strength and ductility. [source] Mechanical and thermal properties of polypropylene/sugarcane Bagasse compositesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2007B. Ramaraj Abstract To determine the possibility of using sugarcane bagasse (SCB) waste as reinforcing filler in the thermoplastic polymer matrix, SCB-reinforced polypropylene (PP) composites were prepared. The PP and SCB composites were prepared by the extrusion of PP resin with 5, 10, 15, and 20 wt % of SCB filler in a corotating twin screw extruder. The extruded strands were cut into pellets and injection molded to make test specimens. These specimens were tested for physicomechanical properties such as tensile, flexural, Izod, and Charpy impact strengths, density, water absorption, and thermal characteristics, namely, heat deflection temperature (HDT), melt flow index, and thermogravimetric analysis. It was found that the flexural strength increased from 23.66 to 26.84 MPa, Izod impact strength increased from 10.499 to 13.23 Kg cm/cm, Charpy impact strength increased from 10.096 to 13.98 Kg cm/cm, and HDT increased from 45.5 to 66.5°C, with increase in filler loading from 5 to 20% in the PP matrix. However, the tensile strength and elongation decreased from 32.22 to 27.21 MPa and 164.4 to 11.20% respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3827,3832, 2007 [source] Influence of Processing Temperature on Microcellular Injection-Moulded Wood,Polypropylene CompositesMACROMOLECULAR MATERIALS & ENGINEERING, Issue 10 2006Andrzej K. Bledzki Abstract Summary: Microcellular wood fibre reinforced polymer materials are significant because of their possibility to reduce the density of automotive components through microcellular structure, process and product part advantages, and as a new development with bio-fibre strengthened plastics. Soft wood fibre reinforced PP composites in box part and panel shape were prepared by an injection moulding process. Polymeric microspheres as a chemical foaming agent (endothermic) were used to produce the microcellular composites. The influence of injection moulding processing temperature on the microcellular structure and properties (tensile and flexural properties, notched charpy impact strength) was investigated by varying the temperature over the 150,170,°C, 160,180,°C and 170,190,°C. A comparative study of cell morphology, weight reduction and mechanical properties was conducted between box part and panel. Microcell morphology, cell size, shape and distribution were investigated using scanning electron micrographs. The results indicated that the lower processing temperature should be below the range of 170,190,°C and processing temperature at 160,180,°C, where the composites showed finer cellular structure compared to other processing temperatures. The mechanical properties did not differ with the variation of processing temperature regardless of composite types (box part or panel). Cellular structure changes in the box part were found considering near or far from injecting point. Microcellular injection-moulded box part (geometry: 150,×,100,×,70 mm3 in size) of soft wood fibre,PP composites. [source] |