Charged Polymers (charged + polymer)

Distribution by Scientific Domains


Selected Abstracts


Silicon Nitride Colloidal Probe Measurements: Interparticle Forces and the Role of Surface-Segment Interactions in Poly(acrylic acid) Adsorption from Aqueous Solution

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 8 2001
Eric Laarz
Direct measurements of forces between silicon nitride surfaces in the presence of poly(acrylic acid) (PAA) are presented. The force-distance curves were obtained at pH > pHiep with an atomic force microscopy (AFM) colloidal-probe technique using a novel spherical silicon nitride probe attached to the AFM cantilever. We found that PAA adsorbs onto the negatively charged silicon nitride surface, which results in an increased repulsive surface potential. The steric contribution to the interparticle repulsion is small and the layer conformation remains flat even at high surface potentials or high ionic strength. The general features of the stabilization of ceramic powders with PAA are discussed; we suggest that PAA adsorbs onto silicon nitride by sequential adsorption of neighboring segments ("zipping"), which results in a flat conformation. In contrast, the long-range steric force found in the ZrO2/PAA system at pH > pHiep arises because the stretched equilibrium bulk conformation of the highly charged polymer is preserved via the formation of strong, irreversible surface-segment bonds on adsorption. [source]


Evaluation of CE methods for global metabolic profiling of urine

ELECTROPHORESIS, Issue 14 2010
Rawi Ramautar
Abstract In this study, the usefulness of noncovalently coated capillaries with layers of charged polymers is investigated to obtain global electrophoretic profiles of urinary metabolites covering a broad range of different compound classes in a highly repeatable way. Capillaries were coated with a bilayer of polybrene (PB) and poly(vinyl sulfonate) (PVS), or with a triple layer of PB, dextran sulfate (DS) and PB. The bilayer and triple layer coatings were evaluated at acidic (pH 2.0) and alkaline (pH 9.0) separation conditions, thereby providing separation conditions for basic and acidic compounds. A representative metabolite mixture and spiked urine samples were used for the evaluation of the four CE methods. Migration time repeatability (RSD<2%) and plate numbers (N, 100,000,400,000) were similar for the test compounds in all CE methods, except for some multivalent ions that may exhibit adsorption to oppositely charged coatings. The analysis of cationic compounds with the PB-DS-PB CE method at low pH (i.e. after the EOF time) provided a larger separation window and number of separated peaks in urine compared to the analysis with the PB-PVS CE method at low pH (i.e. before the EOF time). Approximately, 600 molecular features were detected in rat urine by the PB-DS-PB CE-MS method whereas about 300 features were found with the PB-PVS CE-MS method. This difference can be attributed to reduced comigration of compounds with the PB-DS-PB CE-MS method and a related decrease of ion suppression. With regard to the analysis of anionic compounds by CE-MS, in general analyte responses were significantly lower than that for cationic compounds, most probably due to less efficient ionization and to ion suppression effects caused by the background electrolyte. Hence, further optimization is required for the sensitive CE-MS analysis of anionic compounds in body fluids. It is concluded that the selection of a CE method for profiling of cationic metabolites in urine depends on the purpose of the study. For high-throughput analyses, the PB-PVS CE-MS method is favored whereas the PB-DS-PB CE-MS method provides a more information-rich metabolic profile, but at the cost of prolonged analysis time. [source]


Layer-by-Layer Hydrogen-Bonded Polymer Films: From Fundamentals to Applications

ADVANCED MATERIALS, Issue 30 2009
Eugenia Kharlampieva
Abstract Recent years have seen increasing interest in the construction of nanoscopically layered materials involving aqueous-based sequential assembly of polymers on solid substrates. In the booming research area of layer-by-layer (LbL) assembly of oppositely charged polymers, self-assembly driven by hydrogen bond formation emerges as a powerful technique. Hydrogen-bonded (HB) LbL materials open new opportunities for LbL films, which are more difficult to produce than their electrostatically assembled counterparts. Specifically, the new properties associated with HB assembly include: 1) the ease of producing films responsive to environmental pH at mild pH values, 2) numerous possibilities for converting HB films into single- or two-component ultrathin hydrogel materials, and 3) the inclusion of polymers with low glass transition temperatures (e.g., poly(ethylene oxide)) within ultrathin films. These properties can lead to new applications for HB LbL films, such as pH- and/or temperature-responsive drug delivery systems, materials with tunable mechanical properties, release films dissolvable under physiological conditions, and proton-exchange membranes for fuel cells. In this report, we discuss the recent developments in the synthesis of LbL materials based on HB assembly, the study of their structure,property relationships, and the prospective applications of HB LbL constructs in biotechnology and biomedicine. [source]


Peeling Back the Layers: Controlled Erosion and Triggered Disassembly of Multilayered Polyelectrolyte Thin Films,

ADVANCED MATERIALS, Issue 23 2007
M. Lynn
Abstract Methods for the layer-by-layer deposition of oppositely charged polymers on surfaces can be used to assemble thin multilayered films using a broad range of natural, synthetic, and biologically relevant materials. These methods also permit precise, nanometer-scale control over the compositions and internal structures of multicomponent assemblies. Provided that the individual components of these materials are selected or designed appropriately, these methods provide tantalizing new opportunities to design thin films and coatings that provide spatial, temporal, or active control over the release of one or several different agents from surfaces. The last two years have seen a significant increase in reports describing the development of new chemical, physical, and biomolecular approaches to the controlled erosion, triggered disassembly, or general deconstruction of multilayered polymer films. In this Progress Report, we highlight recent work from our laboratory and several other groups toward the design of ultrathin multilayered assemblies that i),permit broad, tunable, and sophisticated control over film erosion, and ii),provide new opportunities for the localized release of macromolecular therapeutics, such as DNA and proteins, from surfaces. [source]


Ring-opening metathesis polymerization of functionalized cyclooctene by a ruthenium-based catalyst in ionic liquid

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 17 2007
Huijing Han
Abstract This paper describes the synthesis of a novel monomer of 5-substituted cyclooctene with the pendant of imidazolium salt (7) and the ring-opening metathesis polymerization of the functionalized cyclooctenes (4 and 7) in CH2Cl2 and ionic liquid [bmim][PF6] by a ruthenium-based catalyst RuCl2(PCy3)(SIMes)(CHPh) (2). The polymerization, which was carried out in ionic liquid, afforded improved control over the molecular weight (Mn) and polydispersity of the resultant products (PDI <1.4). Furthermore, to facilitate the GPC measurement for molecular weight of polymers, the charged polymers (poly- 7) were hydrolyzed to give uncharged polymers (poly- 4*) by removing the imidazolium pendant from the polymer chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3986,3993, 2007 [source]


Retrovirus-Polymer Complexes: Study of the Factors Affecting the Dose Response of Transduction

BIOTECHNOLOGY PROGRESS, Issue 2 2007
Natalia Landázuri
We have previously shown that complexes of Polybrene (PB), chondroitin sulfate C (CSC), and retrovirus transduce cells more efficiently than uncomplexed virus because the complexes are large and sediment, reaching the cells more rapidly than by diffusion. Transduction reaches a peak at equal weight concentrations of CSC and PB and declines when the dose of PB is higher or lower than CSC. We hypothesized that the nonlinear dose response of transduction was a complex function of the molecular characteristics of the polymers, cell viability, and the number of viruses incorporated into the complexes. To test this hypothesis, we formed complexes using an amphotropic retrovirus and several pairs of oppositely charged polymers and used them to transduce murine fibroblasts. We examined the effect of the type and concentration of polymers used on cell viability, the size and charge of the complexes, the number of viruses incorporated into the complexes, and virus binding and transduction. Transduction was enhanced (2.5- to 5.5-fold) regardless of which polymers were used and was maximized when the number of positive charge groups was in slight excess (15,28%) of the number of negative charge groups. Higher doses of cationic polymer were cytotoxic, whereas complexes formed with lower doses were smaller, contained fewer viruses, and sedimented more slowly. These results show that the dose response of transduction by virus-polymer complexes is nonlinear because excess cationic polymer is cytotoxic, whereas excess anionic polymer reduces the number of active viruses that are delivered to the cells. [source]