Home About us Contact | |||
Charge Values (charge + value)
Selected AbstractsModeling the semi-empirical electrotopological index in QSPR studies for aldehydes and ketonesJOURNAL OF CHEMOMETRICS, Issue 5 2009Érica Silva Souza Abstract The semi-empirical electrotopological index, ISET, used for quantitative structure,retention relationship (QSRR) models firstly developed for alkanes and alkenes, was remodeled for organic functions such as ketones and aldehydes. The ISET values for hydrocarbons are calculated through the atomic charge values obtained from a Mulliken population analysis using the semi-empirical AM1 method and their correlation with the SETi values attributed to the different types of carbon atoms according to experimental data. For ketones and aldehydes the interactions between the molecules and the stationary phase are slowly increased relative to the hydrocarbons, due to the charge redistribution that occurs in the presence of heteroatoms. For these polar molecules the increase in the interactions was included in the calculation of the ISET values through the dipole moment of the whole molecule and also through an equivalent local dipole moment related to the net charges of the atoms of the CO and HCO functional groups. Our findings show that the best definition of an equivalent local dipole moment is clearly dependent on the specific features of the charge distribution in the polar region of the molecules (e.g. ketones and aldehydes), which allows them to be distinguished. Thus, the QSRR models for 15 aldehydes and 42 ketones obtained using the remodeled ISET were of good quality as shown by the statistical parameters. The ability of this remodeled index to include charge distribution and structural details opens a new way to study the correlations between the molecular structure and retention indices in gas chromatography. Copyright © 2009 John Wiley & Sons, Ltd. [source] Eudragit RL100 nanoparticle system for the ophthalmic delivery of cloricromeneJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 7 2004Claudio Bucolo A Eudragit RL100 polymer nanoparticle system loaded with cloricromene was prepared and characterized on the basis of physicochemical properties, stability and drug release features. To investigate the ocular bioavailability of cloricromene after inclusion in the polymer matrix, the new nanoparticle system was topically administered in the rabbit eye and compared with an aqueous solution of the same drug. The nanoparticle system showed interesting size distribution and surface charge values, suitable for ophthalmic application. The results indicated that the dispersion of cloricromene within Eudragit RL100 polymer nanoparticles increased its ocular bioavailability and enhanced the biopharmaceutical profile. The new cloricromene-loaded nanoparticle system described here may be useful in clinical practice. [source] Inhibitory effect of bionic fungicide 2-allylphenol on Botrytis cinerea (Pers. ex Fr.) in vitro,PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 12 2009Shuangjun Gong Abstract BACKGROUND: 2-Allylphenol is a registered fungicide in China to control fungal diseases on tomato, strawberry and apple. It is synthetic and structurally resembles the active ingredient ginkgol isolated from Ginkgo biloba L. bark. 2-Allylphenol has been used in China for 10 years. However, its biochemical mode of action remains unclear. An in vitro study was conducted on the biochemical mechanism of 2-allyphenol inhibiting Botrytis cinerea (Pers. ex Fr.). RESULTS: The inhibition was approximately 3 times stronger when the fungus was grown on non-fermentable source, glycerol, than that on a fermentable carbon source, glucose. Inhibition of B. cinerea and Magnaporthe oryzae (Hebert) Barr mycelial growth was markedly potentiated in the presence of salicylhydroxamic acid (SHAM), an inhibitor of mitochondrial alternative oxidase. Furthermore, at 3 h after treatment with 2-allylphenol, oxygen consumption had recovered, but respiration was resistant to potassium cyanide and sensitive to SHAM, indicating that 2-allylphenol had the ability to induce cyanide-resistant respiration. The mycelium inhibited in the presence of 2-allylphenol grew vigorously after being transferred to a fungicide-free medium, indicating that 2-allylphenol is a fungistatic compound. Adenine nucleotide assay showed that 2-allylphenol depleted ATP content and decreased the energy charge values, which confirmed that 2-allylphenol is involved in the impairment of the ATP energy generation system. CONCLUSION: These results suggested that 2-allylphenol induces cyanide-resistant respiration and causes ATP decrease, and inhibits respiration by an unidentified mechanism. Copyright © 2009 Society of Chemical Industry [source] The Orbitrap: a new mass spectrometerJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 4 2005Qizhi Hu Abstract Research areas such as proteomics and metabolomics are driving the demand for mass spectrometers that have high performance but modest power requirements, size, and cost. This paper describes such an instrument, the Orbitrap, based on a new type of mass analyzer invented by Makarov. The Orbitrap operates by radially trapping ions about a central spindle electrode. An outer barrel-like electrode is coaxial with the inner spindlelike electrode and mass/charge values are measured from the frequency of harmonic ion oscillations, along the axis of the electric field, undergone by the orbitally trapped ions. This axial frequency is independent of the energy and spatial spread of the ions. Ion frequencies are measured non-destructively by acquisition of time-domain image current transients, with subsequent fast Fourier transforms (FFTs) being used to obtain the mass spectra. In addition to describing the Orbitrap mass analyzer, this paper also describes a complete Orbitrap-based mass spectrometer, equipped with an electrospray ionization source (ESI). Ions are transferred from the ESI source through three stages of differential pumping using RF guide quadrupoles. The third quadrupole, pressurized to less than 10,3 Torr with collision gas, acts as an ion accumulator; ion/neutral collisions slow the ions and cause them to pool in an axial potential well at the end of the quadrupole. Ion bunches are injected from this pool into the Orbitrap analyzer for mass analysis. The ion injection process is described in a simplified way, including a description of electrodynamic squeezing, field compensation for the effects of the ion injection slit, and criteria for orbital stability. Features of the Orbitrap at its present stage of development include high mass resolution (up to 150 000), large space charge capacity, high mass accuracy (2,5 ppm), a mass/charge range of at least 6000, and dynamic range greater than 10.3 Applications based on electrospray ionization are described, including characterization of transition-metal complexes, oligosaccharides, peptides, and proteins. Use is also made of the high-resolution capabilities of the Orbitrap to confirm the presence of metaclusters of serine octamers in ESI mass spectra and to perform H/D exchange experiments on these ions in the storage quadrupole. Copyright © 2005 John Wiley & Sons, Ltd. [source] |