Home About us Contact | |||
Charge Measurement (charge + measurement)
Selected AbstractsSpace Charge Measurement in MgO/LDPE Nanocomposite up to Breakdown under DC Ramp VoltageIEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, Issue 4 2010Yoshinobu Murakami Member Abstract To understand the basic electric properties of nanosized magnesium oxide (MgO)/low-density polyethylene (LDPE) nanocomposites under an applied DC voltage, the DC breakdown strength and space charge up to the breakdown under a DC ramp voltage were investigated. Compared to that of the LDPE sample, the sample containing a MgO nanofiller (hereafter, called a nanocomposite) had a higher DC breakdown strength. In the case of the LDPE sample, the homo charges, which contained a large negative charge and a small positive charge, were only observed near the electrodes just prior to breakdown. However, in the case of the nanocomposite sample, the positive charge increased as the average field increased until the average field reached a certain value. After that, the positive charge decreased as the average field increased until breakdown occurred. The field enhancement rate (=maximum field/average field) of the nanocomposite sample increased with the average field, until it became saturated. After peaking, the field enhancement rate of the nanocomposite sample decreased as the average field increased. These observations suggest that, instead of the MgO nanofiller suppressing the electronic avalanche, it suppresses the conduction current, which was determined by the space charge, leading to the higher DC breakdown strength. Copyright © 2010 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. [source] Electrostatic Charge Measurement and Charge Neutralization of Fine Aerosol Particles during the Generation ProcessPARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, Issue 5 2005Chuen-Jinn Tsai Abstract An aerosol charge analyzer has been constructed to measure the charge distribution of NaCl particles generated in the laboratory. A radioactive electrostatic charge neutralizer utilizing Po-210 was used to neutralize the electrostatic charge of the particles. The atomization technique was used to generate NaCl particles with diameters of 0.2 to 0.8 ,m, while the evaporation and condensation method was adopted to generate particles of 0.01 to 0.2 ,m in diameter. The experimental data demonstrates that the absolute average particle charge depends on the particle diameter, and is higher than that calculated by the Boltzmann charge equilibrium for particles within the range of 0.2 to 0.8 ,m. The charge increases with decreasing NaCl concentration. When these particles are neutralized using the Po-210 neutralizer, it is found that the electrostatic charge reaches the Boltzmann charge equilibrium. For 0.01 to 0.2 ,m NaCl particles generated using the evaporation and condensation method, test results show that the absolute average particle charge is higher than that calculated by the Boltzmann charge equilibrium for particles larger than 0.03 to 0.05 ,m in diameter, while it is lower than that predicted by the Fuchs theory [1], for particles smaller than 0.03 to 0.05 ,m. However, after charge neutralization, particles with diameter above 0.05 ,m reach the Boltzmann charge equilibrium condition, and the charges for particles with diameters of 0.010 to 0.05 ,m, agree well with Fuchs' theory. [source] Physicochemical properties of Shiga toxigenic Escherichia coliJOURNAL OF APPLIED MICROBIOLOGY, Issue 4 2005L. Rivas Abstract Aims:, To investigate the physicochemical surface properties, such as cellular surface charge, hydrophobicity and electron donor/acceptor potential of a selection of Shiga toxigenic Escherichia coli (STEC) isolates grown in broth and agar culture. Methods and Results:, Cellular surface charge was determined using zeta potential measurements. Hydrophobicity of the isolates was determined using bacterial adhesion to hydrocarbons assay, hydrophobic interaction chromatography and contact angle measurements. Microbial adhesion to solvents was used to determine the electron donor/acceptor characteristics. No differences of surface charge measurements were found between broth and agar grown cultures. Isolates belonging to serogroup O157 and serotypes O26:H11 and O111:H- were significantly (P < 0·05) less negatively charged than other STEC serotypes tested. All strains were hydrophilic with most methods and demonstrated a lower hydrophobicity in agar culture compared with broth culture. All strains demonstrated a strong microbial adhesion to chloroform indicating that STEC possess an electron donor and basic character. A relationship between serogroup O157 and other STEC serotypes was apparent using principal-component analysis (PCA). Conclusions:, Combining the results for physicochemical properties using PCA differentiated between strains belonging to the O157 serogroup and other STEC/non-STEC strains. PCA found similar results for broth and agar grown cultures. Significance and Impact of the Study:, Particular serotypes of STEC possess similar physicochemical properties which may play a role in their pathogenicity or potential attachment to various surfaces. [source] Development of a packaging material using antistatic ionomer part 2: charge distributions of potassium ionomerPACKAGING TECHNOLOGY AND SCIENCE, Issue 5 2007Nobuyuki Maki Abstract Generally, plastics and plastic films are low in moisture absorption and high in electric insulation. They are inherently easy to be charged with static and can cause a variety of static troubles. We developed a functional packaging material to solve these static problems, by using potassium ionomer. We reported good antistatic performance (e.g. short static decay time, and excellent ash test) of potassium ionomer films in a previous paper. However, a mechanism underlying the antistatic property of potassium ionomer has not yet been fully elucidated. In this study, we measured the space charge distributions of potassium ionomer using the pulsed electro-acoustic method. As a result of the space charge measurements, we found characteristic charge distribution of potassium ionomer film. On the basis of the existence of this characteristic charge distribution, we speculate that the space electric charge distribution of a potassium ionomer film under a direct current electric field shows apparent electric charge movement. Copyright © 2006 John Wiley & Sons, Ltd. [source] |