Home About us Contact | |||
Charge Carrier Transport (charge + carrier_transport)
Selected AbstractsTemperature-Resolved Local and Macroscopic Charge Carrier Transport in Thin P3HT Layers,ADVANCED FUNCTIONAL MATERIALS, Issue 14 2010Patrick Pingel Abstract Previous investigations of the field-effect mobility in poly(3-hexylthiophene) (P3HT) layers revealed a strong dependence on molecular weight (MW), which was shown to be closely related to layer morphology. Here, charge carrier mobilities of two P3HT MW fractions (medium-MW: Mn,=,7,200 g mol,1; high-MW: Mn,=,27,000 g mol,1) are probed as a function of temperature at a local and a macroscopic length scale, using pulse-radiolysis time-resolved microwave conductivity (PR-TRMC) and organic field-effect transistor measurements, respectively. In contrast to the macroscopic transport properties, the local intra-grain mobility depends only weakly on MW (being in the order of 10,2 cm2 V,1 s,1) and being thermally activated below the melting temperature for both fractions. The striking differences of charge transport at both length scales are related to the heterogeneity of the layer morphology. The quantitative analysis of temperature-dependent UV/Vis absorption spectra according to a model of F. C. Spano reveals that a substantial amount of disordered material is present in these P3HT layers. Moreover, the analysis predicts that aggregates in medium-MW P3HT undergo a "pre-melting" significantly below the actual melting temperature. The results suggest that macroscopic charge transport in samples of short-chain P3HT is strongly inhibited by the presence of disordered domains, while in high-MW P3HT the low-mobility disordered zones are bridged via inter-crystalline molecular connections. [source] Inkjet-Printed Single-Droplet Organic Transistors Based on Semiconductor Nanowires Embedded in Insulating PolymersADVANCED FUNCTIONAL MATERIALS, Issue 19 2010Jung Ah Lim Fabrication of organic field-effect transistors (OFETs) using a high-throughput printing process has garnered tremendous interest for realizing low-cost and large-area flexible electronic devices. Printing of organic semiconductors for active layer of transistor is one of the most critical steps for achieving this goal. The charge carrier transport behavior in this layer, dictated by the crystalline microstructure and molecular orientations of the organic semiconductor, determines the transistor performance. Here, it is demonstrated that an inkjet-printed single-droplet of a semiconducting/insulating polymer blend holds substantial promise as a means for implementing direct-write fabrication of organic transistors. Control of the solubility of the semiconducting component in a blend solution can yield an inkjet-printed single-droplet blend film characterized by a semiconductor nanowire network embedded in an insulating polymer matrix. The inkjet-printed blend films having this unique structure provide effective pathways for charge carrier transport through semiconductor nanowires, as well as significantly improve the on-off current ratio and the environmental stability of the printed transistors. [source] The Role of OTS Density on Pentacene and C60 Nucleation, Thin Film Growth, and Transistor PerformanceADVANCED FUNCTIONAL MATERIALS, Issue 12 2009Ajay Virkar Abstract In organic thin film transistors (OTFTs), charge transport occurs in the first few monolayers of the semiconductor near the semiconductor/dielectric interface. Previous work has investigated the roles of dielectric surface energy, roughness, and chemical functionality on performance. However, large discrepancies in performance, even with apparently identical surface treatments, indicate that additional surface parameters must be identified and controlled in order to optimize OTFTs. Here, a crystalline, dense octadecylsilane (OTS) surface modification layer is found that promotes two-dimensional semiconductor growth. Higher mobility is consistently achieved for films deposited on crystalline OTS compared to on disordered OTS, with mobilities as high as 5.3 and 2.3,cm2,V,1,s,1 for C60 and pentacene, respectively. This is a significant step toward morphological control of organic semiconductors which is directly linked to their thin film charge carrier transport. [source] Influence of Dipolar Fields on the Photochemical Reactivity of Thin Titania Films on BaTiO3 SubstratesJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2006Nina V. Burbure The photochemical properties of TiO2 films supported on BaTiO3 were investigated to test the hypothesis that dipolar fields from a ferroelectric substrate would affect the reactivity of the supported film. Photochemical reaction products were formed on the TiO2 surface in patterns that correspond to the underlying domain structure of BaTiO3. As the film thickness increases from 10 to 100 nm, the titania more effectively screens the ferroelectric field, and the pattern of reaction products is obscured. It is concluded that dipolar fields from the ferroelectric substrate influence charge carrier transport in the film and spatially localize the reaction products. [source] Model of the influence of energetic disorder on inter-chain charge carrier mobility in poly[2-methoxy-5-(2,-ethylhexyloxy)- p -phenylene vinylene]POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 3 2009Petr Toman Abstract The theoretical model of the inter-chain charge carrier mobility in poly[2-methoxy-5-(2,-ethylhexyloxy)- p -phenylene vinylene] (MEH,PPV) doped with polar additive is put forward. The polymer chain states of a charge carrier were calculated by means of diagonalization of a tight-binding Hamiltonian, which includes disorder in both the local energies and transfer integrals. Consequently, the inter-chain charge carrier transport is taking place on a spatially and energetically disordered medium. Because it is believed that the additive does not significantly influence the polymer supramolecular structure, the polymer conformations were simplified as much as possible. On the other hand, the energetic disorder is rigorously described. The transfer rates between the polymer chains were determined using the quasi-classical Marcus theory. The model considered the following steps of the charge carrier transport: the charge carrier hops to a given polymer chain. Then, the charge carrier thermalizes to the Boltzmann distribution over all its possible states on this chain. After that, the charge carrier hops to any possible state on one of the four nearest neighboring chains. The results showed that the inter-chain charge carrier mobility is very strongly dependent on the degree of the energetic disorder. If the energetic disorder is doubled from 0.09 to 0.18,eV, the mobility decreases by two or three orders of magnitude. Copyright © 2008 John Wiley & Sons, Ltd. [source] Quadrupolar glass as a model for charge carrier transport in nonpolar organic materialsANNALEN DER PHYSIK, Issue 12 2009S.V. Novikov Abstract Monte Carlo simulation of the charge carrier transport in disordered nonpolar organic materials has been carried out. As a suitable model we considered the model of quadrupolar glass. A general formula for the temperature and field dependence of the mobility was suggested. A comparison with experimental data has been carried out. [source] |