Home About us Contact | |||
Charge Capacity (charge + capacity)
Selected AbstractsReduced Surfactant Uptake in Three Dimensional Assemblies of VOx Nanotubes Improves Reversible Li+ Intercalation and Charge CapacityADVANCED FUNCTIONAL MATERIALS, Issue 11 2009Colm O'Dwyer Abstract The relationship between the nanoscale structure of vanadium pentoxide nanotubes and their ability to accommodate Li+ during intercalation/deintercalation is explored. The nanotubes are synthesized using two different precursors through a surfactant-assisted templating method, resulting in standalone VOx (vanadium oxide) nanotubes and also "nano-urchin". Under highly reducing conditions, where the interlaminar uptake of primary alkylamines is maximized, standalone nanotubes exhibit near-perfect scrolled layers and long-range structural order even at the molecular level. Under less reducing conditions, the degree of amine uptake is reduced due to a lower density of V4+ sites and less V2O5 is functionalized with adsorbed alkylammonium cations. This is typical of the nano-urchin structure. High-resolution TEM studies revealed the unique observation of nanometer-scale nanocrystals of pristine unreacted V2O5 throughout the length of the nanotubes in the nano-urchin. Electrochemical intercalation studies revealed that the very well ordered xerogel-based nanotubes exhibit similar specific capacities (235,mA h g,1) to Na+ -exchange nanorolls of VOx (200,mA h g,1). By comparison, the theoretical maximum value is reported to be 240,mA h g,1. The VOTPP-based nanotubes of the nano-urchin 3D assemblies, however, exhibit useful charge capacities exceeding 437,mA h g,1, which is a considerable advance for VOx based nanomaterials and one of the highest known capacities for Li+ intercalated laminar vanadates. [source] The Orbitrap: a new mass spectrometerJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 4 2005Qizhi Hu Abstract Research areas such as proteomics and metabolomics are driving the demand for mass spectrometers that have high performance but modest power requirements, size, and cost. This paper describes such an instrument, the Orbitrap, based on a new type of mass analyzer invented by Makarov. The Orbitrap operates by radially trapping ions about a central spindle electrode. An outer barrel-like electrode is coaxial with the inner spindlelike electrode and mass/charge values are measured from the frequency of harmonic ion oscillations, along the axis of the electric field, undergone by the orbitally trapped ions. This axial frequency is independent of the energy and spatial spread of the ions. Ion frequencies are measured non-destructively by acquisition of time-domain image current transients, with subsequent fast Fourier transforms (FFTs) being used to obtain the mass spectra. In addition to describing the Orbitrap mass analyzer, this paper also describes a complete Orbitrap-based mass spectrometer, equipped with an electrospray ionization source (ESI). Ions are transferred from the ESI source through three stages of differential pumping using RF guide quadrupoles. The third quadrupole, pressurized to less than 10,3 Torr with collision gas, acts as an ion accumulator; ion/neutral collisions slow the ions and cause them to pool in an axial potential well at the end of the quadrupole. Ion bunches are injected from this pool into the Orbitrap analyzer for mass analysis. The ion injection process is described in a simplified way, including a description of electrodynamic squeezing, field compensation for the effects of the ion injection slit, and criteria for orbital stability. Features of the Orbitrap at its present stage of development include high mass resolution (up to 150 000), large space charge capacity, high mass accuracy (2,5 ppm), a mass/charge range of at least 6000, and dynamic range greater than 10.3 Applications based on electrospray ionization are described, including characterization of transition-metal complexes, oligosaccharides, peptides, and proteins. Use is also made of the high-resolution capabilities of the Orbitrap to confirm the presence of metaclusters of serine octamers in ESI mass spectra and to perform H/D exchange experiments on these ions in the storage quadrupole. Copyright © 2005 John Wiley & Sons, Ltd. [source] Synthesis and characterization of carbon nanotube/polypyrrole core,shell nanocomposites via in situ inverse microemulsionJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 23 2005Yijun Yu Abstract We demonstrate here a feasible approach to the preparation of multiwalled carbon nanotube (MWNT)/polypyrrole (PPy) core,shell nanowires by in situ inverse microemulsion. Transmission electron microscopy and scanning electron microscopy showed that the carbon nanotubes were uniformly coated with a PPy layer with a thickness of several to several tens of nanometers, depending on the MWNT content. Fourier transform infrared spectra suggested that there was strong interaction between the ,-bonded surface of the carbon nanotubes and the conjugated structure of the PPy shell layer. The thermal stability and electrical conductivity of the MWNT/PPy composites were examined with thermogravimetric analysis and a conventional four-probe method. In comparison with pure PPy, the decomposition temperature of the MWNT/PPy (1 wt % MWNT) composites increased from 305 to 335 °C, and the electrical conductivity of the MWNT/PPy (1 wt % MWNT) composites increased by 1 order of magnitude. The current,voltage curves of the MWNT/PPy nanocomposites followed Ohm's law, reflecting the metallic character of the MWNT/PPy nanocomposites. The cyclic voltammetry measurements revealed that PPy/MWNT composites showed an enhancement in the specific charge capacity with respect to that of pure PPy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6105,6115, 2005 [source] Minimizing analyte electrolysis in electrospray ionization mass spectrometry using a redox buffer coated emitter electrode,RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 9 2010Emese Peintler-Krivan An emitter electrode with an electroactive poly(pyrrole) (PPy) polymer film coating was constructed for use in electrospray ionization mass spectrometry (ESI-MS). The PPy film acted as a surface-attached redox buffer limiting the interfacial potential of the emitter electrode. While extensive oxidation of selected analytes (reserpine and amodiaquine) was observed in positive ion mode ESI using a bare metal (gold) emitter electrode, the oxidation was suppressed for these same analytes when using the PPy-coated electrode. A semi-quantitative relationship between the rate of oxidation observed and the interfacial potential of the emitter electrode was shown. The redox buffer capacity, and therefore the lifetime of the redox buffering effect, correlated with the oxidation potential of the analyte and with the magnitude of the film charge capacity. Online reduction of the PPy polymer layer using negative ion mode ESI between analyte injections was shown to successfully restore the redox buffering capacity of the polymer film to its initial state. Published in 2010 by John Wiley & Sons, Ltd. [source] |