Channel Width (channel + width)

Distribution by Scientific Domains


Selected Abstracts


Geomorphic and riparian forest influences on characteristics of large wood and large-wood jams in old-growth and second-growth forests in Northern Michigan, USA

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2007
Arthur E. L. Morris
Abstract Large wood (LW; pieces with diameter greater than 10 cm and length greater than 1 m) and large-wood jams (LWJs; two or more pieces of LW in contact with each other) are important components of stream ecosystems that are often distributed along stream channels in response to geomorphic and riparian forest factors that interact hierarchically. As a result, information on these relationships is valuable for predicting patterns of wood accumulation and characteristics of individual pieces of wood. We studied relationships between geomorphic and riparian factors and LW and LWJ structure in different geomorphic settings associated with old-growth and second-growth settings in Upper Michigan. We used redundancy analysis (RDA) and regression tree analysis to evaluate changes in LW and LWJ structural characteristics among geomorphic and riparian forest settings. Geomorphic factors explained 38·5% of the variability in LW and LWJ characteristics, riparian forest factors uniquely explained 18·4% of the variance and the intersection of the two categories of environmental factors (i.e. the redundant portion) was 29·8%. At the landscape scale, our multivariate analyses suggest that the presence of rock-plane bedding was an important predictor of the number of LWJs and the percent of channel spanned by LWJs. Our analyses suggest differences in relationships between geomorphic factors and LW and LWJ structure. Channel width, distance from headwaters, gradient and sinuosity were identified by regression tree analyses as the most important variables for predicting LW characteristics, while channel width and confinement were the most important variables for predicting LWJ characteristics. Old-growth settings generally contained a higher proportion of conifer and LW (both in and out of LWJs) with greater diameter and volume than in second-growth settings. Our study supports the view that restoration of wood to streams will benefit from considering the associations of wood structure with landscape and reach-scale geomorphology. Copyright © 2007 John Wiley & Sons, Ltd. [source]


ADJUSTMENT OF STREAM CHANNEL CAPACITY FOLLOWING DAM CLOSURE, YEGUA CREEK, TEXAS,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2002
Anne Chin
ABSTRACT: In Yegua Creek, a principal tributary of the Brazos River in Texas, surveys of a 19 km channel reach downstream of Somerville Dam show that channel capacity decreased by an average of 65 percent in a 34 year period following dam closure. The decrease corresponds with an approximately 85 percent reduction in annual flood peaks. Channel depth has changed the most, decreasing by an average of 61 percent. Channel width remained stable with an average decrease of only 9 percent, reflecting cohesive bank materials along with the growth of riparian vegetation resulting from increased low flows during dry summer months. Although large changes in stream channel geometry are not uncommon downstream of dams, such pronounced reductions in channel capacity could have long-term implications for sediment delivery through the system. [source]


Effects of vegetation on channel morphodynamics: results and insights from laboratory experiments

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 9 2010
Michal Tal
Abstract A series of laboratory experiments demonstrates that riparian vegetation can cause a braided channel to self-organize to, and maintain, a dynamic, single-thread channel. The initial condition for the experiments was steady-state braiding in non-cohesive sand under uniform discharge. From here, an experiment consisted of repeated cycles alternating a short duration high flow with a long duration low flow, and uniform dispersal of alfalfa seeds over the bed at the end of each high flow. Plants established on freshly deposited bars and areas of braidplain that were unoccupied during low flow. The presence of the plants had the effect of progressively focusing the high flow so that a single dominant channel developed. The single-thread channel self-adjusted to carry the high flow. Vegetation also slowed the rate of bank erosion. Matching of deposition along the point bar with erosion along the outer bend enabled the channel to develop sinuosity and migrate laterally while suppressing channel splitting and the creation of new channel width. The experimental channels spontaneously reproduced many of the mechanisms by which natural meandering channels migrate and maintain a single dominant channel, in particular bend growth and channel cutoff. In contrast with the braided system, where channel switching is a nearly continuous process, vegetation maintained a coherent channel until wholesale diversion of flow via cutoff and/or avulsion occurred, by which point the previous channel tended to be highly unfavorable for flow. Thus vegetation discouraged the coexistence of multiple channels. Varying discharge was key to allowing expression of feedbacks between the plants and the flow and promoting the transition from braiding to a single-thread channel that was then dynamically maintained. Copyright © 2010 John Wiley & Sons, Ltd. [source]


A conceptual model for the longitudinal distribution of wood in mountain streams

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 3 2009
Ellen Wohl
Abstract Wood load, channel parameters and valley parameters were surveyed in 50 contiguous stream segments each 25 m in length along 12 streams in the Colorado Front Range. Length and diameter of each piece of wood were measured, and the orientation of each piece was tallied as a ramp, buried, bridge or unattached. These data were then used to evaluate longitudinal patterns of wood distribution in forested headwater streams of the Colorado Front Range, and potential channel-, valley- and watershed-scale controls on these patterns. We hypothesized that (i) wood load decreases downstream, (ii) wood is non-randomly distributed at channel lengths of tens to hundreds of meters as a result of the presence of wood jams and (iii) the proportion of wood clustered into jams increases with drainage area as a result of downstream increases in relative capacity of a stream to transport wood introduced from the adjacent riparian zone and valley bottom. Results indicate a progressive downstream decrease in wood load within channels, and correlations between wood load and drainage area, elevation, channel width, bed gradient and total stream power. Results support the first and second hypotheses, but are inconclusive with respect to the third hypothesis. Wood is non-randomly distributed at lengths of tens to hundreds of meters, but the proportion of pieces in jams reaches a maximum at intermediate downstream distances within the study area. We use these results to propose a conceptual model illustrating downstream trends in wood within streams of the Colorado Front Range. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Spatial variability in the timing, nature and extent of channel response to typical human disturbance along the Upper Hunter River, New South Wales, Australia

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 6 2008
Joanna Hoyle
Abstract Prior to European settlement, the Upper Hunter River near Muswellbrook, New South Wales, was a passively meandering gravel-bed river of moderate sinuosity and relatively uniform channel width. Analyses of floodplain sedimentology, archival records, parish maps and aerial photographs document marked spatial variability in the pattern of channel change since European settlement in the 1820s. Different types, rates and extents of change are reported for seven zones of adjustment along an 8 km study reach. This variable adjustment reflects imposed antecedent controls (buried terrace material and bedrock), which have significantly influenced local variability in river sensitivity to change, as well as contemporary morphodynamics and geomorphic complexity. Local variability in system responses to disturbance has important implications for future river management and rehabilitation. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Geomorphic and riparian forest influences on characteristics of large wood and large-wood jams in old-growth and second-growth forests in Northern Michigan, USA

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2007
Arthur E. L. Morris
Abstract Large wood (LW; pieces with diameter greater than 10 cm and length greater than 1 m) and large-wood jams (LWJs; two or more pieces of LW in contact with each other) are important components of stream ecosystems that are often distributed along stream channels in response to geomorphic and riparian forest factors that interact hierarchically. As a result, information on these relationships is valuable for predicting patterns of wood accumulation and characteristics of individual pieces of wood. We studied relationships between geomorphic and riparian factors and LW and LWJ structure in different geomorphic settings associated with old-growth and second-growth settings in Upper Michigan. We used redundancy analysis (RDA) and regression tree analysis to evaluate changes in LW and LWJ structural characteristics among geomorphic and riparian forest settings. Geomorphic factors explained 38·5% of the variability in LW and LWJ characteristics, riparian forest factors uniquely explained 18·4% of the variance and the intersection of the two categories of environmental factors (i.e. the redundant portion) was 29·8%. At the landscape scale, our multivariate analyses suggest that the presence of rock-plane bedding was an important predictor of the number of LWJs and the percent of channel spanned by LWJs. Our analyses suggest differences in relationships between geomorphic factors and LW and LWJ structure. Channel width, distance from headwaters, gradient and sinuosity were identified by regression tree analyses as the most important variables for predicting LW characteristics, while channel width and confinement were the most important variables for predicting LWJ characteristics. Old-growth settings generally contained a higher proportion of conifer and LW (both in and out of LWJs) with greater diameter and volume than in second-growth settings. Our study supports the view that restoration of wood to streams will benefit from considering the associations of wood structure with landscape and reach-scale geomorphology. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Reach-scale channel geometry of a mountain river

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 8 2004
Ellen Wohl
Abstract Mountain rivers can be subject to strong constraints imposed by changes in gradient and grain size supplied by processes such as glaciation and rockfall. Nonetheless, adjustments in the channel geometry and hydraulics of mountain rivers at the reach scale can produce discernible patterns analogous to those in fully alluvial rivers. Mountain rivers can differ in that imposed reach-scale gradient is an especially important control on reach-scale channel characteristics, as indicated by examination of North St Vrain Creek in Colorado. North St Vrain Creek drains 250 km2 of the Rocky Mountains. We used 25 study reaches within the basin to examine controls on reach-scale channel geometry. Variables measured included channel geometry, large woody debris, grain size, and mean velocity. Drainage area at the study reaches ranged from 2·2 to 245 km2, and gradient from 0·013 to 0·147 m m,1. We examined correlations among (1) potential reach-scale response variables describing channel bankfull dimension and shape, hydraulics, bedform wavelength and amplitude, grain size, ,ow resistance, standard deviation of hydraulic radius, and volume of large woody debris, and (2) potential control variables that change progressively downstream (drainage area, discharge) or that are likely to re,ect a reach-speci,c control (bed gradient). We tested the hypothesis that response variables correlate most strongly with local bed gradient because of the segmented nature of mountain channels. Results from simple linear regression analyses indicate that most response variables correlate best with gradient, although channel width and width/depth ratio correlate best with discharge. Multiple regression analyses using Mallow's Cp selection criterion and log-transformation of all variables produced similar results in that most response variables correlate strongly with gradient. These results suggest that the hypothesis is partially supported: channel bed gradient is likely to be a good predictor for many reach-scale response variables along mountain rivers, but discharge is also an important predictor for some response variables. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Recent channel adjustments in alluvial rivers of Tuscany, central Italy

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 6 2003
Massimo RinaldiArticle first published online: 19 JUN 200
Abstract Drastic channel adjustments have affected the main alluvial rivers of Tuscany (central Italy) during the 20th century. Bed-level adjustments were identified both by comparing available topographic longitudinal profiles of different years and through field observations. Changes in channel width were investigated by comparing available aerial photographs (1954 and 1993,98). Bed incision represents the dominant type of vertical adjustment, and is generalized along all the fluvial systems investigated. The Arno River system is the most affected by bed-level lowering (up to 9 m), whereas lower incision (generally less than 2 m) is observed along the rivers of the southern part of the region. Human disturbances appear to be the dominant factors of adjustments: the main phase of vertical change occurred during the period 1945,80, in concomitance with the phase of maximum sediment mining activity at the regional scale. The second dominant type of adjustment that involved most of the rivers in the region consists of a narrowing of the active channel. Based on measurements of channel width conducted on aerial photographs, 38% of the reaches analysed experienced a narrowing greater than 50% of the initial channel width. The largest values of channel narrowing were observed along initially braided or sinuous with alternate bars morphologies in the southern portion of the region. A regional scheme of channel adjustments is derived, based on initial channel morphology and on the amounts of incision and narrowing. Different styles of channel adjustments are described. Rivers that were originally sinuous with alternate bars to braided generally became adjusted by a moderate incision and a moderate to intense narrowing; in contrast, sinuous-meandering channels mainly adjusted vertically, with a minor amount of narrowing. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Impact of wastewater discharge on the channel morphology of ephemeral streams

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 12 2001
Marwan A. Hassan
Abstract The impact of wastewater flow on the channel bed morphology was evaluated in four ephemeral streams in Israel and the Palestinian Territories: Nahal Og, Nahal Kidron, Nahal Qeult and Nahal Hebron. Channel changes before, during and after the halting of wastewater flow were monitored. The wastewater flow causes a shift from a dry ephemeral channel with intermittent floods to a continuous flow pattern similar to that of humid areas. Within a few months, nutrient-rich wastewater flow leads to rapid development of vegetation along channel and bars. The colonization of part of the active channel by vegetation increases flow resistance as well as bank and bed stability, and limits sediment availability from bars and other sediment stores along the channels. In some cases the established vegetation covers the entire channel width and halts the transport of bed material along the channel. During low and medium size flood events, bars remain stable and the vegetation intact. Extreme events destroy the vegetation and activate the bars. The wastewater flow results in the development of new small bars, which are usually destroyed by flood flows. Due to the vegetation establishment, the active channel width decreases by up to 700 per cent. The deposition of fine sediment and organic material changed the sediment texture within the stable bar surface and the whole bed surface texture in Nahal Hebron. The recovery of Nahal Og after the halting of the wastewater flow was relatively fast; within two flood seasons the channel almost returned to pre-wastewater characteristics. The results of the study could be used to indicate what would happen if wastewater flows were introduced along natural desert streams. Also, the results could be used to predict the consequences of vegetation removal as a result of human intervention within the active channel of humid streams. Copyright © 2001 John Wiley & Sons, Ltd. [source]


The river domain: why are there more species halfway up the river?

ECOGRAPHY, Issue 2 2006
Robert R. Dunn
Biologists have long noted higher levels of species diversity in the longitudinal middle-courses of river systems and have proposed many explanations. As a new explanation for this widespread pattern, we suggest that many middle-course peaks in richness may be, at least in part, a consequence of geometric constraints on the location of species' ranges along river courses, considering river headwaters and mouths as boundaries for the taxa considered. We demonstrate this extension of the mid-domain effect (MDE) to river systems for riparian plants along two rivers in Sweden, where a previous study found a middle-course peak in richness of natural (non-ruderal) species. We compare patterns of empirical richness of these species to null model predictions of species richness along the two river systems and to spatial patterns for six environmental variables (channel width, substrate fineness, substrate heterogeneity, ice scour, bank height, and bank area). In addition, we examine the independent prediction of mid-domain effects models that species with large ranges, because the location of their ranges is more constrained, are more likely to produce a mid-domain peak in richness than are species with small ranges. Species richness patterns of riparian plants were best predicted by models including both null model predictions and environmental variables. When species were divided into large-ranged and small-ranged groups, the mid-domain effect was more prominent and the null model predictions were a better fit to the empirical richness patterns of large-ranged species than those of small-ranged species. Our results suggest that the peak in riparian plant species richness in the middle courses of the rivers studied can be explained by an underlying mid-domain effect (driven by geometric constraints on large-ranged species), together with environmental effects on richness patterns (particularly on small-ranged species). We suggest that the mid-domain effect may help to explain similar middle-course richness peaks along other rivers. [source]


Relative influences of catchment- and reach-scale abiotic factors on freshwater fish communities in rivers of northeastern Mesoamerica

ECOLOGY OF FRESHWATER FISH, Issue 3 2010
P. C. Esselman
Esselman PC, Allan JD. Relative influences of catchment- and reach-scale abiotic factors on freshwater fish communities in rivers of northeastern Mesoamerica. Ecology of Freshwater Fish 2010: 19: 439,454. © 2010 John Wiley & Sons A/S Abstract,,, While the abiotic factors important to freshwater fish assemblages at a reach scale are well understood, studies of larger scale constraints have yielded variable conclusions, spurring a need for further studies in new biogeographic contexts. This study investigated the importance of catchment- and reach-scale abiotic factors to variation in freshwater fish assemblages in rivers of northeastern Mesoamerica. Abiotic variables and fish data from 72 sampling sites on main stem rivers of Belize were used with partial constrained ordination to determine the proportion of spatially structured and unstructured variation in fish presence and absence, relative abundance, and community metrics explained by catchment- and reach-scale environmental factors. Results showed that, combined, catchment and reach variables explained a large portion of the total variation in the fish assemblage data (54,75%), and that catchment environment explained a greater portion of variation (42,63%) than reach environment (34,50%). Variables representing landscape position (local elevation, watershed area) and their reach-level correlates (channel width, depth variation, and substrate) correlated strongly to the fish assemblage data. Our results suggest that landscape-scale factors have a stronger relative influence on assemblages than environmental conditions at the reach scale within our study area. These results contrast with past findings that showed greater local scale influence in landscapes with low anthropogenic disturbance levels. Our findings suggest that biodiversity conservation efforts should consider assemblage variation across a longitudinal gradient, and that a multi-catchment region is a biologically relevant scale for fish conservation planning and coordination in northeastern Mesoamerica. [source]


Lattice Boltzmann simulation on flow fields connected with multiple side-channels

HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 2 2007
Shohji Tsushima
Abstract For this study, using the lattice Boltzmann method (LBM), we conducted flow-field analyses in which two straight channels were mutually connected with multiple side-channels. Results showed that calculated flow fields can be categorized into three types of flow pattern depending on flow field geometry and flow conditions. The following typical flow patterns were identified: case 1, the incoming flow passes uniformly through the side channels; case 2, the flow passes preferentially through the side channel in the inlet and the outlet; and case 3, the flow passes mainly through the side channel of the outlet side. Results also indicate that these flow patterns depend on two dimensionless parameters: the ratio of permeability of the side channels to the channel width, and the Reynolds number. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(2): 96,104, 2007; Published online in Wiley InterScience (www. interscience.wiley.com). DOI 10.1002/htj.20143 [source]


Prediction of concentrated flow width in ephemeral gully channels

HYDROLOGICAL PROCESSES, Issue 10 2002
J. Nachtergaele
Abstract Empirical prediction equations of the form W = aQb have been reported for rills and rivers, but not for ephemeral gullies. In this study six experimental data sets are used to establish a relationship between channel width (W, m) and flow discharge (Q, m3 s,1) for ephemeral gullies formed on cropland. The resulting regression equation (W = 2·51 Q0·412; R2 = 0·72; n = 67) predicts observed channel width reasonably well. Owing to logistic limitations related to the respective experimental set ups, only relatively small runoff discharges (i.e. Q < 0·02 m3s,1) were covered. Using field data, where measured ephemeral gully channel width was attributed to a calculated peak runoff discharge on sealed cropland, the application field of the regression equation was extended towards larger discharges (i.e. 5 × 10,4m3s,1 < Q < 0·1 m3s,1). Comparing W,Q relationships for concentrated flow channels revealed that the discharge exponent (b) varies from 0·3 for rills over 0·4 for gullies to 0·5 for rivers. This shift in b may be the result of: (i) differences in flow shear stress distribution over the wetted perimeter between rills, gullies and rivers, (ii) a decrease in probability of a channel formed in soil material with uniform erosion resistance from rills over gullies to rivers and (iii) a decrease in average surface slope from rills over gullies to rivers. The proposed W,Q equation for ephemeral gullies is valid for (sealed) cropland with no significant change in erosion resistance with depth. Two examples illustrate limitations of the W,Q approach. In a first example, vertical erosion is hindered by a frozen subsoil. The second example relates to a typical summer situation where the soil moisture profile of an agricultural field makes the top 0·02 m five times more erodible than the underlying soil material. For both cases observed W values are larger than those predicted by the established channel width equation for concentrated flow on cropland. For the frozen soils the equation W = 3·17 Q0·368 (R2 = 0·78; n = 617) was established, but for the summer soils no equation could be established. Copyright © 2002 John Wiley & Sons, Ltd. [source]


A simple model of river meandering and its comparison to natural channels

HYDROLOGICAL PROCESSES, Issue 1 2002
Stephen T. Lancaster
Abstract We develop a new method for analysis of meandering channels based on planform sinuosity. This analysis objectively identifies three channel-reach lengths based on sinuosity measured at those lengths: the length of typical, simple bends; the length of long, often compound bends; and the length of several bends in sequence that often evolve from compound bends to form multibend loops. These lengths, when normalized by channel width, tend to fall into distinct and clustered ranges for different natural channels. Mean sinuosity at these lengths also falls into distinct ranges. That range is largest for the third and greatest length, indicating that, for some streams, multibend loops are important for planform sinuosity, whereas for other streams, multibend loops are less important. The role of multibend loops is seldom addressed in the literature, and they are not well predicted by previous modelling efforts. Also neglected by previous modelling efforts is bank,flow interaction and its role in meander evolution. We introduce a simple river meandering model based on topographic steering that has more in common with cellular approaches to channel braiding and landscape evolution modelling than to rigorous, physics-based analyses of river meandering. The model is sufficient to produce reasonable meandering channel evolution and predicts compound bend and multibend loop formation similar to that observed in nature, in both mechanism and importance for planform sinuosity. In the model, the tendency to form compound bends is sensitive to the relative magnitudes of two lengths governing meander evolution: (i) the distance between the bend cross-over and the zone of maximum bank shear stress, and (ii) the bank shear stress dissipation length related to bank roughness. In our simple model, the two lengths are independent. This sensitivity implies that the tendency for natural channels to form compound bends may be greater when the banks are smoother. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Large eddy simulation of turbulent concentric annular channel flows

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 12 2004
Nan-Sheng Liu
Abstract Fully developed turbulent concentric annular channel flow has been investigated numerically by use of large eddy simulation (LES) technique coupled with a localized one-equation dynamic subgrid-scale (SGS) model. The objective of this study is to deal with the behaviour of turbulent flow near the inner and outer walls of the concentric annular channel and to examine the effectiveness of LES technique for predicting the turbulent flow influenced by the transverse curvature effect. The computations are performed for the Reynolds number Re,=180, 395 and 640, based on an averaged friction velocity and the annular channel width with the inner and outer cylinder radius being Ri=1 and Ro=2. To validate the present approach, calculated results for turbulent pipe flow and concentric annular channel flow are compared with available experimental data and direct numerical simulation results, which confirms that the present approach can be used to study turbulent concentric annular channel flow satisfactorily. To elucidate turbulence characteristics in the concentric annular channel, some typical quantities, including the resolved velocity, turbulence intensity, turbulent eddy viscosity, SGS kinetic energy, SGS dissipation rate, Reynolds stress budgets, and turbulence structures based on the velocity fluctuations, are analysed. Copyright © 2004 John Wiley & Sons, Ltd. [source]


The geometrical design of membraneless micro fuel cells: Failure and success

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 10 2010
Dewan Hasan Ahmed
Abstract A comprehensive numerical study of membraneless micro fuel cells with various geometries is carried out with the aim of reducing the mixing of the anode and cathode fluids and increasing their fuel utilization. Designs with blocks or obstacles in the main channel or a main channel with a wavy shape result in very little improvement in these properties or even in their deterioration. However, some designs with other types of channel cross-section exhibit much less mixing of the two fluids in the main channel. In particular, an octagonal cross-section is found to result in better performance. However, the difficulty of the micro fabrication of fuel cells with this design encourages us to test two other geometries for the cross-section: H-shaped and trident-shaped. The H-shaped cross-section exhibits much less mixing in the main channel and much higher fuel utilization. The fuel cell with a trident-shaped cross-section has two inlets for the anode and cathode fluids and a third inlet for the proton-conducting fluid, and is found to be the best design in that the anode and cathode fluids are more restricted to their respective electrodes (reaction surfaces). Further, in this design the reactants cover only 40% of the channel width, which is much less than in the other designs, and maximum fuel utilization is obtained. The failure and success cases will guide for future geometrical design of any micro fluidic devices where mixing and non-mixing issues are the major concerns. The present numerical results are validated by comparison with literature data. Copyright © 2009 John Wiley & Sons, Ltd. [source]


WIDTH OF STREAMS AND RIVERS IN RESPONSE TO VEGETATION, BANK MATERIAL, AND OTHER FACTORS,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2004
Russell J. Anderson
ABSTRACT: An extensive group of datasets was analyzed to examine factors affecting widths of streams and rivers. Results indicate that vegetative controls on channel size are scale dependent. In channels with watersheds greater than 10 to 100 km2, widths are narrower in channels with thick woody bank vegetation than in grass lined or nonforested banks. The converse is true in smaller streams apparently due to interactions between woody debris, shading, understory vegetation, rooting characteristics, and channel size. A tree based statistical method (regression tree) is introduced and tested as a tool for identifying thresholds of response and interpreting interactions between variables. The implications of scale dependent controls on channel width are discussed in the context of stable channel design methods and development of regional hydraulic geometry curves. [source]


CHANNEL STABILITY DOWNSTREAM FROM A DAM ASSESSED USING AERIAL PHOTOGRAPHS AND STREAM-GAGE INFORMATION,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2000
Kyle E. Juracek
ABSTRACT: The stability of the Neosho River channel downstream from John Redmond Dam, in southeast Kansas, was investigated using multiple-date aerial photographs and stream-gage information. Bankfull channel width was used as the primary indicator variable to assess pre- and post-dam channel change. Five sin-mile river reaches and four stream gages were used in the analysis. Results indicated that, aside from some localized channel widening, the overall channel change has been minor with little post-dam change in bankfull channel width. The lack of a pronounced post-dam channel change may be attributed to a substantial reduction in the magnitude of the post-dam annual peak discharges in combination with the resistance to erosion of the bed and bank materials. Also, the channel may have been overwidened by a series of large floods that predated construction of the dam, including one with an estimated 500-year recurrence interval. [source]


ABUNDANCE OF IRRAWADDY DOLPHINS (ORCAELLA BREVIROSTRIS) AND GANGES RIVER DOLPHINS (PLATANISTA GANGETICA GANGETICA) ESTIMATED USING CONCURRENT COUNTS MADE BY INDEPENDENT TEAMS IN WATERWAYS OF THE SUNDARBANS MANGROVE FOREST IN BANGLADESH

MARINE MAMMAL SCIENCE, Issue 3 2006
Brian D. Smith
Abstract Independent observer teams made concurrent counts of Irrawaddy dolphins Orcaella brevirostris and Ganges River dolphins Platanista gangetica gangetica in mangrove channels of the Sundarbans Delta in Bangladesh. These counts were corrected for missed groups using mark-recapture models. For Irrawaddy dolphins, a stratified Lincoln-Petersen model, which incorporated group size and sighting conditions as covariates, and a Huggins conditional likelihood model, which averaged models that individually incorporated group size, sighting conditions, and channel width as covariates, generated abundance estimates of 397 individuals (CV = 10.2%) and 451 individuals (CV = 9.6%), respectively. For Ganges River dolphins, a stratified Lincoln-Petersen model, which incorporated group size as a covariate, and a Huggins conditional likelihood model, which averaged the same models described above, generated abundance estimates of 196 individuals (CV = 12.7%) and 225 individuals (CV = 12.6%), respectively. Although the estimates for both models were relatively close, the analytical advantages of the Huggins models probably outweigh those of the Lincoln-Petersen models. However, the latter should be considered appropriate when simplicity is a priority. This study found that waterways of the Sundarbans support significant numbers of Irrawaddy and Ganges River dolphins, especially compared to other areas where the species have been surveyed. [source]


Design, process, and performance of all-epitaxial normally-off SiC JFETs

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 10 2009
Rajesh K. Malhan
Abstract This paper reviews the normally-off (N - off) and normally-on (N - on) SiC junction field effect transistor (JFET) concepts and presents an innovative all-epitaxial double-gate trench JFET (DGTJFET) structure. The DGTJFET design combines the advantages of lateral and buried gate JFET concepts. The lateral JFET advantage is the epitaxial definition of the channel width and the buried gate JFET advantage is the small cell size. In the DGTJFET process the epitaxial embedded growth in trenches facilitates the small cell pitch and the vertical direction of the channel. A detailed numerical simulation analysis compares the potential of the DGTJFET design with reported lateral channel and buried gate JFET structures. Migration enhanced embedded epitaxy (ME3) and planarization processes were developed to realize narrow cell pitch DGTJFETs for high-density power integration. The highly doped vertical channel of the DGTJFET defined by the ME3 growth process makes it possible to accurately control the sub-micron channel dimensions in order to realize a low specific on-state resistance (RON) and a high saturation current capability. The anisotropic nature of SiC is taken into account for the channel design considerations. The successful application of the new process technologies for the development of the all-epitaxial DGTJFETs is discussed. Fabricated 5.5 ,m cell pitch 4H-SiC DGTJFETs demonstrate the saturation current density capability of more than 1000 A/cm2. N - off and N - on DGTJFETs with 2.25 mm squared chip size and 9.5 ,m cell pitch output 15 A and 20 A at gate voltage of 2.5 V and drain voltage of 5.0 V. The specific RON of the N - off and N - on DGTJFETs is at room temperature 8.1 m , cm2 and 6.3 m, cm2, respectively, indicating that N - off devices can be realized at the expense of a slight increase in specific RON of approximately 25%. DGTJFETs with a 13 ,m drift layer doped to 5.0 × 1015 cm,3 are demonstrated with a breakdown voltage in the range of 1200 V to 1550 V at the wafer level with a leakage current below 10 ,A. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Two-Dimensional Electron Dynamics in GaN/AlGaN Heterostructures

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 1 2003
S.A. Vitusevich
Abstract This report addresses the study of two-dimensional electron gas (2DEG) transport at low and moderate electric fields. The devices under study are group-III nitride-based (AlGaN/GaN) gateless heterostructures grown on sapphire for HEMT applications. The transmission line model (TLM) patterns of different channel lengths L and the same channel width are used. We have developed a simple theoretical model to adequately describe the observed peculiarities in the I,V characteristics measured in steady-state and pulsed (10,6 s) regimes. The effect of Joule heating of a heterostructure is clearly distinguished. The thermal impedances and the channel temperature rise caused by the Joule self-heating have been extracted for the devices of different L at different values of dissipated power. [source]


Linear waves in a symmetric equatorial channel

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 624 2007
C. Erlick
Abstract Using a scaling that allows us to separate the effects of the gravity wave speed from those of boundary location, we reduce the equations for linear waves in a zonal channel on the equatorial beta-plane to a single-parameter eigenvalue problem of the Schrödinger type with parabolic potential. The single parameter can be written , = (,,)2/,1/2, where , = gH(2,R),2, ,, is half the channel width, g is the acceleration due to gravity, H is the typical height of the troposphere or ocean, , is the Earth's rotational frequency, and R is the Earth's radius. The Schrödinger-type equation has exact analytical solutions in the limits , , 0 and , , ,, and one can use these to write an approximate expression for the solution that is accurate everywhere to within 4%. In addition to the simple expression for the eigenvalues, the concise and unified theory also yields explicit expressions for the associated eigenfunctions, which are pure sinusoidal in the , , 0 limit and Gaussian in the , , , limit. Using the same scaling, we derive an eigenvalue formulation for linear waves in an equatorial channel on the sphere with a simple explicit formula for the dispersion relation accurate to O{(,,)2}. From this, we find that the phase velocity of the anti-Kelvin mode on the sphere differs by as much as 10% from , ,1/2. Integrating the linearized shallow-water equations on the sphere, we find that for for larger , and ,,, the phase speeds of all of the negative modes differ substantially from their phase speeds on the beta-plane. Furthermore, the dispersion relations of all of the waves in the equatorial channel on the sphere approach those on the unbounded sphere in a smooth asymptotic fashion, which is not true for the equatorial channel on the beta-plane. Copyright © 2007 Royal Meteorological Society [source]


New RE microporous heteropolyhedral silicates containing 41516182 tetrahedral sheets

ACTA CRYSTALLOGRAPHICA SECTION B, Issue 2 2010
Marcella Cadoni
Four heteropolyhedral microporous silicates, A3RESi6O15·2.25H2O, crystallizing in the Cmm2 space group and based on 41516182 tetrahedral sheets [A3 = Na2.74K0.26, RE = Ce, abbreviated as TR05; TR06: A3 = Na2.72K0.28, RE = La; TR07: A3 = Na3, RE = La; TR08: A3 = Na2.74(H3O)0.26, RE = La0.68Eu0.32] have been hydrothermally synthesized in Teflon-lined autoclaves at 503,K and structurally characterized using X-ray diffraction single-crystal data. Except for TR05, diffraction data have been collected on {001} twins by merohedry. The four structures are isotypic and based on strongly corrugated 41516182 silicate sheets interconnected along [010] by seven-coordinated RE polyhedra to form a microporous heteropolyhedral framework. The framework is crossed by three systems of ellipsoidal channels that host H2O molecules and alkaline ions. The channels run either parallel or perpendicular to the silicate sheets; the largest effective channel width is 4.7,×,2,Å. In TR08 some (H3O)+ replaces alkalis. Although the H atoms have not been localized, the configuration of the hydrogen bonding has been deduced from bond lengths and angles. [source]


Investigating the surface process response to fault interaction and linkage using a numerical modelling approach

BASIN RESEARCH, Issue 3 2006
P.A. Cowie
ABSTRACT In order to better understand the evolution of rift-related topography and sedimentation, we present the results of a numerical modelling study in which elevation changes generated by extensional fault propagation, interaction and linkage are used to drive a landscape evolution model. Drainage network development, landsliding and sediment accumulation in response to faulting are calculated using CASCADE, a numerical model developed by Braun and Sambridge, and the results are compared with field examples. We first show theoretically how the ,fluvial length scale', Lf, in the fluvial incision algorithm can be related to the erodibility of the substrate and can be varied to mimic a range of river behaviour between detachment-limited (DL) and transport-limited (TL) end-member models for river incision. We also present new hydraulic geometry data from an extensional setting which show that channel width does not scale with drainage area where a channel incises through an area of active footwall uplift. We include this information in the coupled model, initially for a single value of Lf, and use it to demonstrate how fault interaction controls the location of the main drainage divide and thus the size of the footwall catchments that develop along an evolving basin-bounding normal fault. We show how erosion by landsliding and fluvial incision varies as the footwall area grows and quantify the volume, source area, and timing of sediment input to the hanging-wall basin through time. We also demonstrate how fault growth imposes a geometrical control on the scaling of river discharge with downstream distance within the footwall catchments, thus influencing the incision rate of rivers that drain into the hanging-wall basin. Whether these rivers continue to flow into the basin after the basin-bounding fault becomes fully linked strongly depends on the value of Lf. We show that such rivers are more likely to maintain their course if they are close to the TL end member (small Lf); as a river becomes progressively more under supplied, i.e. the DL end member (large Lf), it is more likely to be deflected or dammed by the growing fault. These model results are compared quantitatively with real drainage networks from mainland Greece, the Italian Apennines and eastern California. Finally, we infer the calibre of sediments entering the hanging-wall basin by integrating measurements of erosion rate across the growing footwall with the variation in surface processes in space and time. Combining this information with the observed structural control of sediment entry points into individual hanging-wall depocentres we develop a greater understanding of facies changes associated with the rift-initiation to rift-climax transition previously recognised in syn-rift stratigraphy. [source]