Channel Pore (channel + pore)

Distribution by Scientific Domains


Selected Abstracts


Saturation and self-inhibition of rat hippocampal GABAA receptors at high GABA concentrations

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2002
Katarzyna Mercik
Abstract Current responses to ultrafast ,-aminobutyric acid (GABA) applications were recorded from excised patches in rat hippocampal neurons to study the gating properties of GABAA receptors at GABA concentrations close to saturating ones and higher. The amplitude of currents saturated at approximately 1 mm, while the onset rate of responses reached saturation at 4,6 mm GABA. At high GABA concentrations (> 10 mm), the amplitude of current responses was reduced in a dose-dependent manner with a half-blocking GABA concentration of approximately 50 mm. The peak reduction at high GABA doses was accompanied by a tendency to increase the steady-state to peak ratio. At concentrations higher than 30 mm, this effect took the form of a rebound current, i.e. during the prolonged GABA applications, the current firstly declined due to desensitization onset and then, instead of decreasing towards a steady-state value, clearly increased. Both the self-inhibition of GABAA receptors by high GABA doses and rebound were clearly voltage dependent, being larger at positive holding potentials. The fast desensitization component accelerated with depolarization at all saturating [GABA] tested. The rebound phenomenon indicates that the self-block of GABAA receptors is state dependent, and suggests that the sojourn in the desensitized conformation provides a ,rescue' from the block. We propose that high GABA concentrations inhibit the receptors by direct occlusion of the channel pore having no effect on the receptor gating. [source]


The molecular architecture of the arachidonate-regulated Ca2+ -selective ARC channel is a pentameric assembly of Orai1 and Orai3 subunits

THE JOURNAL OF PHYSIOLOGY, Issue 17 2009
Olivier Mignen
The activation of Ca2+ entry is a critical component of agonist-induced cytosolic Ca2+ signals in non-excitable cells. Although a variety of different channels may be involved in such entry, the recent identification of the STIM and Orai proteins has focused attention on the channels in which these proteins play a key role. To date, two distinct highly Ca2+ -selective STIM1-regulated and Orai-based channels have been identified , the store-operated CRAC channels and the store-independent arachidonic acid activated ARC channels. In contrast to the CRAC channels, where the channel pore is composed of only Orai1 subunits, both Orai1 and Orai3 subunits are essential components of the ARC channel pore. Using an approach involving the co-expression of a dominant-negative Orai1 monomer along with different preassembled concatenated Orai1 constructs, we recently demonstrated that the functional CRAC channel pore is formed by a homotetrameric assembly of Orai1 subunits. Here, we use a similar approach to demonstrate that the functional ARC channel pore is a heteropentameric assembly of three Orai1 subunits and two Orai3 subunits. Expression of concatenated pentameric constructs with this stoichiometry results in the appearance of large currents that display all the key biophysical and pharmacological features of the endogenous ARC channels. They also replicate the essential regulatory characteristics of native ARC channels including specific activation by low concentrations of arachidonic acid, complete independence of store depletion, and an absolute requirement for the pool of STIM1 that constitutively resides in the plasma membrane. [source]


Quantitative Structure,Activity Relationship Models for Predicting Biological Properties, Developed by Combining Structure- and Ligand-Based Approaches: An Application to the Human Ether-a-go-go-Related Gene Potassium Channel Inhibition

CHEMICAL BIOLOGY & DRUG DESIGN, Issue 4 2009
Alessio Coi
A strategy for developing accurate quantitative structure,activity relationship models enabling predictions of biological properties, when suitable knowledge concerning both ligands and biological target is available, was tested on a data set where molecules are characterized by high structural diversity. Such a strategy was applied to human ether-a-go-go-related gene K+ channel inhibition and consists of a combination of ligand- and structure-based approaches, which can be carried out whenever the three-dimensional structure of the target macromolecule is known or may be modeled with good accuracy. Molecular conformations of ligands were obtained by means of molecular docking, performed in a previously built theoretical model of the channel pore, so that descriptors depending upon the three-dimensional molecular structure were properly computed. A modification of the directed sphere-exclusion algorithm was developed and exploited to properly splitting the whole dataset into Training/Test set pairs. Molecular descriptors, computed by means of the codessa program, were used for the search of reliable quantitative structure,activity relationship models that were subsequently identified through a rigorous validation analysis. Finally, pIC50 values of a prediction set, external to the initial dataset, were predicted and the results confirmed the high predictive power of the model within a quite wide chemical space. [source]