Home About us Contact | |||
Channel Length (channel + length)
Selected AbstractsSonographic study of the development of fetal corpus callosum in a Chinese populationJOURNAL OF CLINICAL ULTRASOUND, Issue 2 2009Hai-chun Zhang MM Abstract Purpose The observation of fetal corpus callosum (CC) is important for the prenatal sonographic assessment of fetal central nervous system development. The aim of this study was to investigate the development of normal Chinese fetal CC. Method CC measurements were performed using high-resolution transabdominal sonography on 622 Chinese fetuses between 16 and 39 weeks' gestation. The correlation between CC size and gestational age was investigated. Results The fetal CC length increased in a linear fashion during pregnancy. The length of the CC as a function of gestational age was expressed by the following regression equation: length (mm) = ,9.567 + 1.495 × gestational age (weeks) (r = 0.932, p < 0.001). Conclusion Knowledge of normal CC appearance may help identify developmental anomalies and enable accurate prenatal counseling. © 2008 Wiley Periodicals, Inc. J Clin Ultrasound, 2009 [source] Scale-dependent controls upon the fluvial export of large wood from river catchmentsEARTH SURFACE PROCESSES AND LANDFORMS, Issue 6 2009Jung Il Seo Abstract The annual fluvial export of large wood (LW) was monitored by local reservoir management offices in Japan. LW export per unit watershed area was relatively high in small watersheds, peaked in intermediate watersheds, and decreased in large watersheds. To explain these variations, we surveyed the amount of LW with respect to channel morphology in 78 segments (26 segments in each size class) in the Nukabira River, northern Japan. We examined the differences in LW dynamics, including its recruitment, transport, storage, and fragmentation and decay along the spectrum of watershed sizes. We found that a large proportion of LW produced by forest dynamics and hillslope processes was retained because of the narrower valley floors and lower stream power in small watersheds. The retained LW pieces may eventually be exported during debris flows. In intermediate watersheds, the volume of LW derived from hillslopes decreased substantially with reductions in the proportion of channel length bordered by hillslope margins, which potentially deliver large quantities of LW. Because these channels have lower wood piece length to channel width ratios and higher stream power, LW pieces can be transported downstream. During transport, LW pieces are further fragmented and can be more easily transported. Therefore, the fluvial export of LW is maximized in intermediate watersheds. Rivers in large watersheds, where the recruitment of LW is limited by the decreasing hillslope margins, cannot transport LW pieces because of their low stream power, and thus LW pieces accumulate at various storage sites. Although these stored LW pieces can be refloated and transported by subsequent flood events, they may also become trapped by obstacles such as logjams and standing trees on floodplains and in secondary channels, remaining there for decades and eventually decaying into fine organic particles. Thus, the fluvial export of LW pieces is low in large watersheds. Copyright © 2009 John Wiley & Sons, Ltd. [source] Planform dynamics of the Lower Mississippi RiverEARTH SURFACE PROCESSES AND LANDFORMS, Issue 7 2006Oliver P. Harmar Abstract This paper presents an analysis of the planform behaviour of the Lower Mississippi River (LMR) using a series of maps and hydrographic surveys covering the period 1765,1975. Data allow analysis at various time and space scales, using fixed and statistically defined reaches, both before and after extensive channel modification. Previous research has interpreted planform change in relation to geomorphological or engineering regime-type analyses of channel length and width for the LMR as a ,single system'. The analysis here is broadly consistent with these approaches, but highlights the importance of meander geometry, in the form of the radius of curvature:width ratio. This neglected factor helps resolve paradoxes relating to observed changes in sediment transport and channel stability. When viewed over smaller time and space scales, analysis of dynamics using fixed reach boundaries reveals a downstream trend in the pattern of planform behaviour, which is closely related to the distribution of valley floor deposits, and which also reflects neotectonic influences. Analysis of changes using statistically determined reach boundaries shows that, over shorter time scales, meander trains are continually formed and modified over a period of approximately 120 years. Zones of more-or-less dynamic behaviour thus move through the LMR. The research also provides a context for 20th century engineering interventions to the river. These have constrained the magnitude of planform adjustment, but also altered the kind of response that is now possible in relation to changes in discharge and sediment load, and as a consequence of internal feedbacks within the LMR system. Copyright © 2006 John Wiley & Sons, Ltd. [source] Estimation of Joule heating effect on temperature and pressure distribution in electrokinetic-driven microchannel flowsELECTROPHORESIS, Issue 3 2006Reiyu Chein Professor Abstract In this study we present simple analytical models that predict the temperature and pressure variations in electrokinetic-driven microchannel flow under the Joule heating effect. For temperature prediction, a simple model shows that the temperature is related to the Joule heating parameter, autothermal Joule heating parameter, external cooling parameter, Peclet number, and the channel length to channel hydraulic diameter ratio. The simple model overpredicted the thermally developed temperature compared with the full numerical simulation, but in good agreement with the experimental measurements. The factors that affect the external cooling parameters, such as the heat transfer coefficient, channel configuration, and channel material are also examined based on this simple model. Based on the mass conservation, a simple model is developed that predicts the pressure variations, including the temperature effect. An adverse pressure gradient is required to satisfy the mass conservation requirement. The temperature effect on the pressure gradient is via the temperature-dependent fluid viscosity and electroosmotic velocity. [source] Sequencing of real-world samples using a microfabricated hybrid device having unconstrained straight separation channelsELECTROPHORESIS, Issue 21 2003Shaorong Liu Abstract We describe a microfabricated hybrid device that consists of a microfabricated chip containing multiple twin-T injectors attached to an array of capillaries that serve as the separation channels. A new fabrication process was employed to create two differently sized round channels in a chip. Twin-T injectors were formed by the smaller round channels that match the bore of the separation capillaries and separation capillaries were incorporated to the injectors through the larger round channels that match the outer diameter of the capillaries. This allows for a minimum dead volume and provides a robust chip/capillary interface. This hybrid design takes full advantage, such as sample stacking and purification and uniform signal intensity profile, of the unique chip injection scheme for DNA sequencing while employing long straight capillaries for the separations. In essence, the separation channel length is optimized for both speed and resolution since it is unconstrained by chip size. To demonstrate the reliability and practicality of this hybrid device, we sequenced over 1000 real-world samples from Human Chromosome 5 and Ciona intestinalis, prepared at Joint Genome Institute. We achieved average Phred20 read of 675 bases in about 70 min with a success rate of 91%. For the similar type of samples on MegaBACE 1000, the average Phred20 read is about 550,600 bases in 120 min separation time with a success rate of about 80,90%. [source] Morphometric Controls and Basin Response in The Cascade MountainsGEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 3 2001Fes De Scally Morphometric variables associated with 36 debris torrent, 78 snow avalanche, 45 composite debris torrent and snow avalanche and 14 streamflow basins in the Cascade Mountains of southwestern British Columbia, Canada are examined. The results show significant statistical differences in top and bottom elevations, relief, channel length and gradient, basin area, fan gradient and area, and basin ruggedness between snow avalanche basins and the two basin types affected by debris torrents, reflecting the very different nature of these processes. Only top and bottom elevations and fan area differ significantly between debris torrent and debris torrent-snow avalanche basins, implying that the latter are probably debris torrent basins in origin. As many as six morphometric variables are significantly different between streamflow basins and the other basin types, allowing the former to be differentiated despite their small, steep character. Discriminant analysis indicates that bottom elevation and channel or path gradient are the best variables for classifying the four basin types by process. Generally strong correlations exist between basin area on the one hand and relief, channel length and channel gradient on the other in debris torrent, debris torrent-snow avalanche, and streamflow basins. Fan gradient and area are, however, weakly or modestly correlated with basin area or ruggedness. No such morphometric relations are present in snow avalanche basins. The results of this study also indicate that in debris torrent-prone basins the fan gradient and Melton's R have identifiable lower thresholds while basin area has an upper threshold, but use of these thresholds for identification of debris torrent hazard is complicated by overlapping thresholds for streamflow basins. [source] Orders-of-Magnitude Reduction of the Contact Resistance in Short-Channel Hot Embossed Organic Thin Film Transistors by Oxidative Treatment of Au-Electrodes,ADVANCED FUNCTIONAL MATERIALS, Issue 15 2007B. Stadlober Abstract In this study we report on the optimization of the contact resistance by surface treatment in short-channel bottom-contact OTFTs based on pentacene as semiconductor and SiO2 as gate dielectric. The devices have been fabricated by means of nanoimprint lithography with channel lengths in the range of 0.3,,m,<,L,<,3.0,,m. In order to reduce the contact resistance the Au source- and drain-contacts were subjected to a special UV/ozone treatment, which induced the formation of a thin AuOx layer. It turned out, that the treatment is very effective (i),in decreasing the hole-injection barrier between Au and pentacene and (ii),in improving the morphology of pentacene on top of the Au contacts and thus reducing the access resistance of carriers to the channel. Contact resistance values as low as 80,,,cm were achieved for gate voltages well above the threshold. In devices with untreated contacts, the charge carrier mobility shows a power-law dependence on the channel length, which is closely related to the contact resistance and to the grain-size of the pentacene crystallites. Devices with UV/ozone treated contacts of very low resistance, however, exhibit a charge carrier mobility in the range of 0.3,cm2,V,1,s,1,<,,,<,0.4,cm2,V,1,s,1 independent of the channel length. [source] Extracting Parameters from the Current,Voltage Characteristics of Organic Field-Effect TransistorsADVANCED FUNCTIONAL MATERIALS, Issue 11 2004G. Horowitz Abstract Organic field-effect transistors were fabricated with vapor-deposited pentacene on aluminum oxide insulating layers. Several methods are used in order to extract the mobility and threshold voltage from the transfer characteristic of the devices. In all cases, the mobility is found to depend on the gate voltage. The first method consists of deriving the drain current as a function of gate voltage (transconductance), leading to the so-called field-effect mobility. In the second method, we assume a power-law dependence of the mobility with gate voltage together with a constant contact resistance. The third method is the so-called transfer line method, in which several devices with various channel length are used. It is shown that the mobility is significantly enhanced by modifying the aluminum oxide layer with carboxylic acid self-assembled monolayers prior to pentacene deposition. The methods used to extract parameters yield threshold voltages with an absolute value of less than 2 V. It is also shown that there is a shift of the threshold voltage after modification of the aluminum oxide layer. These features seem to confirm the validity of the parameter-extraction methods. [source] Organic Single-Crystalline Ribbons of a Rigid "H"-type Anthracene Derivative and High-Performance, Short-Channel Field-Effect Transistors of Individual Micro/Nanometer-Sized Ribbons Fabricated by an "Organic Ribbon Mask" Technique,ADVANCED MATERIALS, Issue 14 2008Lang Jiang The synthesis of a rigid, planar H-type anthracene derivative is described. Single-crystalline ribbons at micro- and nanometer sizes can be controllably produced and transistors based on an individual ribbon can be fabricated in situ through a newly developed "organic ribbon mask" method, in which the channel length of the transistors can be easily scaled down to sub-micrometer level. [source] Low power switched-current circuits with low sensitivity to the rise/fall time of the clockINTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, Issue 5 2010Radek Rudnicki Abstract The switched-current (SI) technique permits realizing analog discrete-time circuits in standard digital CMOS technology. A very important property of the analog part of a system on a chip is the possibility it offers for realizing some functions of a digital circuit, but with reduced power consumption. In this paper, a low power SI integrator is presented. It is shown that an integrator consuming a fraction of a milliwatt can be designed in 0.35µm CMOS technology with the use of narrow transistor channels, and with the channel length as a design parameter. The impact of the rise/fall time of the clock signal on the integrator operation is observed. It is shown that this effect can be reduced when the proper switch dimensions are taken for the integrator. Analysis and measurements of the integrator noise are presented. The integrator was built with equal size transistors, yielding less sensitivity to variations in production parameters. An experimental chip in 0.35µm CMOS technology was fabricated, and measurements are compared with results obtained during analysis and simulations. In order to verify the properties of the designed integrator experimentally, a first-order filter is built with the use of elementary cells on the chip. Copyright © 2008 John Wiley & Sons, Ltd. [source] An efficient neural network approach for nanoscale FinFET modelling and circuit simulationINTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS, DEVICES AND FIELDS, Issue 5 2009M. S. Alam Abstract The present paper demonstrates the suitability of artificial neural network (ANN) for modelling of a FinFET in nano-circuit simulation. The FinFET used in this work is designed using careful engineering of source,drain extension, which simultaneously improves maximum frequency of oscillation ,max because of lower gate to drain capacitance, and intrinsic gain AV0,=,gm/gds, due to lower output conductance gds. The framework for the ANN-based FinFET model is a common source equivalent circuit, where the dependence of intrinsic capacitances, resistances and dc drain current Id on drain,source Vds and gate,source Vgs is derived by a simple two-layered neural network architecture. All extrinsic components of the FinFET model are treated as bias independent. The model was implemented in a circuit simulator and verified by its ability to generate accurate response to excitations not used during training. The model was used to design a low-noise amplifier. At low power (Jds,10,µA/µm) improvement was observed in both third-order-intercept IIP3 (,10,dBm) and intrinsic gain AV0 (,20,dB), compared to a comparable bulk MOSFET with similar effective channel length. This is attributed to higher ratio of first-order to third-order derivative of Id with respect to gate voltage and lower gds in FinFET compared to bulk MOSFET. Copyright © 2009 John Wiley & Sons, Ltd. [source] Geomorphic characteristics of the Minjiang drainage basin (eastern Tibetan Plateau) and its tectonic implications: New insights from a digital elevation model studyISLAND ARC, Issue 2 2006Hui-Ping Zhang Abstract The Minshan Mountain and adjacent region are the major continental escarpments along the eastern Tibetan Plateau. The Minjiang drainage basin is located within the plateau margin adjacent to the Sichuan Basin. Based on the analysis of the digital elevation model (DEM) acquired by the Shuttle Radar Topography Mission (SRTM), we know that the Minjiang drainage basin has distinct geomorphic characteristics. The regular increasing of local topographic relief from north to south is a result of the Quaternary sediment deposition within the plateau and the holistic uplift of the eastern margin of the Tibetan Plateau versus the Sichuan Basin. Results from DEM-determined Minjiang drainage sub-basins and channel profiles show that the tributaries on the opposite sides are asymmetric. Lower perimeter and area of drainage sub-basins, total channel length and bifurcation ratio within eastern flank along the Minjiang mainstream are the result of the Quaternary differential uplift of the Minshan Mountain region. Shorter stream lengths and lower bifurcation ratio might be the indications of the undergrowth and newborn features of these eastern streams, which are also representative for the eastern uplift of the Minshan Mountain. [source] Fabrication and analysis of polymer field-effect transistorsPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 6 2004S. Scheinert Abstract Parameters of organic field-effect transistors (OFET) achieved in recent years are promising enough for R & D activities towards a commercial low-cost polymer electronics. In spite of the fast progress, preparations dominated by trial and error are concentrated essentially on higher mobility polymers and shorter channel patterning, and the analysis of measured data is based on oversimplified models. Here ways to professionalize the research on polymer field-effect transistors are discussed exploiting experience accumulated in microelectronics. First of all, designing the devices before fabricating and subsequently analyzing them requires appropriate modelling. Almost independently from the nature of the transport process, the device physics is basically described by the drift-diffusion model, combined with non-degenerate carrier statistics. Therefore, with a modified interpretation of the so-called effective density of states, existing simulation tools can be applied, except for special cases which are discussed. Analytical estimates are helpful already in designing devices, and applied to experimental data they yield input parameters for the numerical simulations. Preparations of OFET's and capacitors with poly(3-ocylthiophene) (P3OT), poly(3-dodecylthiophene) P3HT, Arylamino-poly-(phenylene-vinylene) (PPV), poly(2-methoxy, 5 ethyl (2, hexyloxy) paraphenylenevinylene) MEH-PPV, and pentacene from a soluble precursor are described, with silicon dioxide (SiO2) or poly(4-vinylphenol) (P4VP) as gate insulator, and with rather different channel length. We demonstrate the advantage of combining all steps from design/fabrication to analysis of the experimental data with analytical estimates and numerical simulation. Of special importance is the connection between mobility, transistor channel length, cut-off frequency and operation voltage, which was the starting point for the development of a low-cost fabrication of high-performance submicrometer OFET's by an underetching technique. Finally results of simulation studies are presented concerning the formation of inversion layers, the influence of a trap distribution (as in the a-Si model) and of different types of source/drain contacts on top and bottom contact OFET's, and short-channel effects in submicrometer devices. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Magnetotransport of lateral Py/Pt/Py spin valve devicePHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 12 2007Giju Han Abstract Spin injection and accumulation have been investigated for Py/Pt/Py lateral spin valves with various channel length. Clear spin valve effects were found at antiparallel magnetic configuration of two ferromagnetic electrodes. The observation of memory effect suggests the spin valve effect observed in Pt channel is resulted from effective spin injection and detection. The magnitude of spin valve signal decreases as the channel length increases. The measurement yields that spin diffusion length and spin injection polarization of Pt channel is 120 nm and 18% at 5K. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Relationships between morphological and sedimentological parameters in source-to-sink systems: a basis for predicting semi-quantitative characteristics in subsurface systemsBASIN RESEARCH, Issue 4 2009Tor O. Sømme ABSTRACT The study of source-to-sink systems relates long-term variations in sediment flux to morphogenic evolution of erosional,depositional systems. These variations are caused by an intricate combination of autogenic and allogenic forcing mechanisms that operate on multiple time scales , from individual transport events to large-scale filling of basins. In order to achieve a better understanding of how these mechanisms influence morphological characteristics on different scales, 29 submodern source-to-sink systems have been investigated. The study is based on measurements of morphological parameters from catchments, shelves and slopes derived from a ,1 km global digital elevation model dataset, in combination with data on basin floor fans, sediment supply, water discharge and deposition rates derived from published literature. By comparing various morphological and sedimentological parameters within and between individual systems, a number of relationships governing system evolution and behaviour are identified. The results suggest that the amount of low-gradient floodplain area and river channel gradient are good indicators for catchment storage potential. Catchment area and river channel length is also related to shelf area and shelf width, respectively. Similarly to the floodplain area, these parameters are important for long-term storage of sediment on the shelf platform. Additionally, the basin floor fan area is correlative to the long-term deposition rate and the slope length. The slope length thus proves to be a useful parameter linking proximal and distal segments in source-to-sink systems. The relationships observed in this study provide insight into segment scale development of source-to-sink systems, and an understanding of these relationships in modern systems may result in improved knowledge on internal and external development of source-to-sink systems over geological time scales. They also allow for the development of a set of semi-quantitative guidelines that can be used to predict similar relationships in other systems where data from individual system segments are missing or lacking. [source] Microfabricated Polymer Chip for Capillary Gel ElectrophoresisBIOTECHNOLOGY PROGRESS, Issue 5 2001Jong Wook Hong A polymer (PDMS: poly(dimethylsiloxane)) microchip for capillary gel electrophoresis that can separate different sizes of DNA molecules in a small experimental scale is presented. This microchip can be easily produced by a simple PDMS molding method against a microfabricated master without the use of elaborate bonding processes. This PDMS microchip could be used as a single use device unlike conventional microchips made of glass, quartz or silicon. The capillary channel on the chip was partially filled with agarose gel that can enhance separation resolution of different sizes of DNA molecules and can shorten the channel length required for the separation of the sample compared to capillary electrophoresis in free-flow or polymer solution format. We discuss the optimal conditions for the gel preparation that could be used in the microchannel. DNA molecules were successfully driven by an electric field and separated to form bands in the range of 100 bp to 1 kbp in a 2.0% agarose-filled microchannel with 8 mm of effective separation length. [source] A conceptual model for the longitudinal distribution of wood in mountain streamsEARTH SURFACE PROCESSES AND LANDFORMS, Issue 3 2009Ellen Wohl Abstract Wood load, channel parameters and valley parameters were surveyed in 50 contiguous stream segments each 25 m in length along 12 streams in the Colorado Front Range. Length and diameter of each piece of wood were measured, and the orientation of each piece was tallied as a ramp, buried, bridge or unattached. These data were then used to evaluate longitudinal patterns of wood distribution in forested headwater streams of the Colorado Front Range, and potential channel-, valley- and watershed-scale controls on these patterns. We hypothesized that (i) wood load decreases downstream, (ii) wood is non-randomly distributed at channel lengths of tens to hundreds of meters as a result of the presence of wood jams and (iii) the proportion of wood clustered into jams increases with drainage area as a result of downstream increases in relative capacity of a stream to transport wood introduced from the adjacent riparian zone and valley bottom. Results indicate a progressive downstream decrease in wood load within channels, and correlations between wood load and drainage area, elevation, channel width, bed gradient and total stream power. Results support the first and second hypotheses, but are inconclusive with respect to the third hypothesis. Wood is non-randomly distributed at lengths of tens to hundreds of meters, but the proportion of pieces in jams reaches a maximum at intermediate downstream distances within the study area. We use these results to propose a conceptual model illustrating downstream trends in wood within streams of the Colorado Front Range. Copyright © 2009 John Wiley & Sons, Ltd. [source] Planarization of Polymeric Field-Effect Transistors: Improvement of Nanomorphology and Enhancement of Electrical PerformanceADVANCED FUNCTIONAL MATERIALS, Issue 14 2010Kumar A. Singh Abstract The planarization of bottom-contact organic field-effect transistors (OFETs) resulting in dramatic improvement in the nanomorphology and an associated enhancement in charge injection and transport is reported. Planar OFETs based on regioregular poly(3-hexylthiophene) (rr-P3HT) are fabricated wherein the Au bottom-contacts are recessed completely in the gate-dielectric. Normal OFETs having a conventional bottom-contact configuration with 50-nm-high contacts are used for comparison purpose. A modified solvent-assisted drop-casting process is utilized to form extremely thin rr-P3HT films. This process is critical for direct visualization of the effect of planarization on the polymer morphology. Atomic force micrographs (AFM) show that in a normal OFET the step between the surface of the contacts and the gate dielectric disrupts the self-assembly of the rr-P3HT film, resulting in poor morphology at the contact edges. The planarization of contacts results in notable improvement of the nanomorphology of rr-P3HT, resulting in lower resistance to charge injection. However, an improvement in field-effect mobility is observed only at short channel lengths. AFM shows the presence of well-ordered nanofibrils extending over short channel lengths. At longer channel lengths the presence of grain boundaries significantly minimizes the effect of improvement in contact geometry as the charge transport becomes channel-limited. [source] Detailed Characterization of Contact Resistance, Gate-Bias-Dependent Field-Effect Mobility, and Short-Channel Effects with Microscale Elastomeric Single-Crystal Field-Effect TransistorsADVANCED FUNCTIONAL MATERIALS, Issue 5 2009Colin Reese Abstract The organic field-effect transistor (OFET) has proven itself invaluable as both the fundamental element in organic circuits and the primary tool for the characterization of novel organic electronic materials. Crucial to the success of the OFET in each of these venues is a working understanding of the device physics that manifest themselves in the form of electrical characteristics. As commercial applications shift to smaller device dimensions and structure/property relationships become more refined, the understanding of these phenomena become increasingly critical. Here, we employ high-performance, elastomeric, photolithographically patterned single-crystal field-effect transistors as tools for the characterization of short-channel effects and bias-dependent parasitic contact resistance and field-effect mobility. Redundant characterization of devices at multiple channel lengths under a single crystal allow the morphology-free analysis of these effects, which is carried out in the context of a device model previously reported. The data show remarkable consistency with our model, yielding fresh insight into each of these phenomena, as well as confirming the utility of our FET design. [source] Orders-of-Magnitude Reduction of the Contact Resistance in Short-Channel Hot Embossed Organic Thin Film Transistors by Oxidative Treatment of Au-Electrodes,ADVANCED FUNCTIONAL MATERIALS, Issue 15 2007B. Stadlober Abstract In this study we report on the optimization of the contact resistance by surface treatment in short-channel bottom-contact OTFTs based on pentacene as semiconductor and SiO2 as gate dielectric. The devices have been fabricated by means of nanoimprint lithography with channel lengths in the range of 0.3,,m,<,L,<,3.0,,m. In order to reduce the contact resistance the Au source- and drain-contacts were subjected to a special UV/ozone treatment, which induced the formation of a thin AuOx layer. It turned out, that the treatment is very effective (i),in decreasing the hole-injection barrier between Au and pentacene and (ii),in improving the morphology of pentacene on top of the Au contacts and thus reducing the access resistance of carriers to the channel. Contact resistance values as low as 80,,,cm were achieved for gate voltages well above the threshold. In devices with untreated contacts, the charge carrier mobility shows a power-law dependence on the channel length, which is closely related to the contact resistance and to the grain-size of the pentacene crystallites. Devices with UV/ozone treated contacts of very low resistance, however, exhibit a charge carrier mobility in the range of 0.3,cm2,V,1,s,1,<,,,<,0.4,cm2,V,1,s,1 independent of the channel length. [source] A scalable advanced RF IC design-oriented MOSFET model,INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, Issue 4 2008Matthias Bucher Abstract This article presents a validation of the EKV3 MOSFET compact model dedicated to the design of analogue/RF ICs using advanced CMOS technology. The EKV3 model is compared with DC, CV and RF measurements up to 20 GHz of a 110 nm CMOS technology. The scaling behaviour over a large range of channel lengths and bias conditions is presented. Long-channel devices show significant non-quasi static effects while in short-channel devices the parasitics modelling is critical. This is illustrated with Y-parameters and ft vs. ID in NMOS and PMOS devices, showing good overall RF modelling abilities of the EKV3 MOSFET model. © 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2008. [source] Impact of strain on scaling of Double Gate nanoMOSFETs using NEGF approachPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 1 2008A. Martinez Abstract The effect of biaxial strain on double gate (DG) nanoscaled MOSFET with channel lengths in the nanometre range is investigated using Non-Equilibrium Green's Functions (NEGF) simulations. The NEGF simulations are fully 2D in order to accurately evaluate the effects of strain in strongly confined channels. Starting with a 14 nm gate length DG MOSFET with a corresponding body thickness of 9 nm we scale the transistors to gate lengths of 10, 6 and 4 nm and body thicknesses of 6.1, 2.6 and 1.3 nm, respectively. The simulated ID-VG characteristics show 11% improvement in the oncurrent for the 14 nm gate length transistor due to the , valley splitting. This improvement in the on-current is due to separate contributions from the 2 fold and 4 fold valleys to the carrier transport. However, in the device with an extreme body thickness of 1.3 nm the strain has no impact on its performance because the strong confinement itself produces a large valley splitting. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |