Home About us Contact | |||
Channel Inhibitors (channel + inhibitor)
Selected AbstractsBicarbonate-rich choleresis induced by secretin in normal rat is taurocholate-dependent and involves AE2 anion exchanger,HEPATOLOGY, Issue 2 2006Jesús M. Banales Canalicular bile is modified along bile ducts through reabsorptive and secretory processes regulated by nerves, bile salts, and hormones such as secretin. Secretin stimulates ductular cystic fibrosis transmembrane conductance regulator (CFTR),dependent Cl, efflux and subsequent biliary HCO3, secretion, possibly via Cl,/HCO3, anion exchange (AE). However, the contribution of secretin to bile regulation in the normal rat, the significance of choleretic bile salts in secretin effects, and the role of Cl,/HCO3, exchange in secretin-stimulated HCO3, secretion all remain unclear. Here, secretin was administered to normal rats with maintained bile acid pool via continuous taurocholate infusion. Bile flow and biliary HCO3, and Cl, excretion were monitored following intrabiliary retrograde fluxes of saline solutions with and without the Cl, channel inhibitor 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) or the Cl,/HCO3, exchange inhibitor 4,4,-diisothiocyanatostilbene-2,2,-disulfonic acid (DIDS). Secretin increased bile flow and biliary excretion of HCO3, and Cl,. Interestingly, secretin effects were not observed in the absence of taurocholate. Whereas secretin effects were all blocked by intrabiliary NPPB, DIDS only inhibited secretin-induced increases in bile flow and HCO3, excretion but not the increased Cl, excretion, revealing a role of biliary Cl,/HCO3, exchange in secretin-induced, bicarbonate-rich choleresis in normal rats. Finally, small hairpin RNA adenoviral constructs were used to demonstrate the involvement of the Na+ -independent anion exchanger 2 (AE2) through gene silencing in normal rat cholangiocytes. AE2 gene silencing caused a marked inhibition of unstimulated and secretin-stimulated Cl,/HCO3, exchange. In conclusion, maintenance of the bile acid pool is crucial for secretin to induce bicarbonate-rich choleresis in the normal rat and that this occurs via a chloride,bicarbonate exchange process consistent with AE2 function. (HEPATOLOGY 2006;43:266,275.) [source] Mechanisms involved in the antinociceptive effect caused by diphenyl diselenide in the formalin testJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 12 2008Lucielli Savegnago This study investigated the mechanisms involved in the antinociceptive action induced by diphenyl diselenide ((PhSe)2) in the formalin test. Mice were pre-treated with (PhSe)2 by the oral route (0.1,100 mg kg,1), 30 min before formalin injection. To address some of the mechanisms by which (PhSe)2 inhibits formalin-induced nociception mice were treated with different drugs. The antinociceptive effect of (PhSe)2 was shown in the first and second phases of the formalin test. The antinociceptive effect caused by (PhSe)2 (10 mg kg,1, p.o.) was prevented by intrathecal injection of K+ channel blockers such as apamin and charybdotoxin (small- and large-conductance Ca2+ -activated K+ channel inhibitors, respectively) and tetraethylammonium (TEA, a non-selective voltage-dependent K+ channel inhibitor), but not glib-enclamide (an ATP-sensitive K+ channel inhibitor). The antinociceptive action caused by (PhSe)2 (10 mg kg,1, p.o.) was also blocked by a nitric oxide (NO) synthase inhibitor (N, -nitro- l -arginine, L-NOARG) and the soluble guanylate cyclase inhibitors 1H -[1,2,4]oxadiazolo[4,3- a]quinoxalin-1-one (ODQ) and methylene blue. These results suggest the participation of NO/cyclic GMP/Ca2+ and K+ channel pathways in the antinociceptive effect caused by (PhSe)2. [source] Bioactive aldehydes from diatoms block the fertilization current in ascidian oocytesMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 1 2003Elisabetta Tosti Abstract The effects of bioactive aldehydes from diatoms, unicellular algae at the base of the marine food web, were studied on fertilization and early development processes of the ascidian Ciona intestinalis. Using whole-cell voltage clamp techniques, we show that 2- trans -4- trans -decadienal (DD) and 2- trans -4- cis -7- cis -decatrienal (DT) inhibited the fertilization current which is generated in oocytes upon interaction with the spermatozoon. This inhibition was dose-dependent and was accompanied by inhibition of the voltage-gated calcium current activity of the plasma membrane. DD and DT did not inhibit the subsequent contraction of the cortex. Moreover, DD specifically acted as a fertilization channel inhibitor since it did not affect the steady state conductance of the plasma membrane or gap junctional (GJ) communication within blastomeres of the embryo. On the other hand, DD did affect actin reorganization even though the mechanism of action on actin filaments differed from that of other actin blockers. Possibly this effect on actin reorganization was responsible for the subsequent teratogenic action on larval development. The effect of DD was reversible if oocytes were washed soon after fertilization indicating that DD may specifically target certain fertilization mechanisms. Thus, diatom reactive aldehydes such as DD may have a dual effect on reproductive processes, influencing primary fertilization events such as gating of fertilization channels and secondary processes such as actin reorganization which is responsible for the segregation of cell lineages. These findings add to a growing body of evidence on the antiproliferative effects of diatom-derived aldehydes. Our results also report, for the first time, on the action of a fertilization channel blocker in marine invertebrates. Mol. Reprod. Dev. 66: 72,80, 2003. © 2003 Wiley-Liss, Inc. [source] Blunted effect of the Kv channel inhibitor on pulmonary circulation in Tibetan sheep: A model for studying hypoxia and pulmonary artery pressure regulationRESPIROLOGY, Issue 1 2004Takeshi Ishizaki Objective: The aim of this study was to assess the effect of 4-aminopyridine, a Kv channel inhibitor, on the pulmonary circulation of Tibetan sheep. It has been reported that chronic hypoxia downregulates the 4-aminopyridine (4AP)-sensitive Kv channel (which governs the membrane potential (Em) of pulmonary vascular smooth muscle cells in pulmonary vessels) without a change in 4AP sensitivity. Methodology: Pulmonary haemodynamic indices and blood gas analyses were measured in six young male animals in an altitude chamber that was adjusted to simulated altitudes of 0 m, 2260 m, and 4500 m. Drip infusion of 4AP, 10 mg/h for 3 h, was started and continued during the study. Results: With the increase in altitude mean pulmonary artery pressure increased and mean Pao2 decreased. 4AP had no effect on the levels of mean PPA, mean pulmonary artery wedge pressure, cardiac output, and mean PaO2, mean PaCO2, and mean pH at any altitude but tended to alter heart rate and mean arterial pressure at altitudes of 2260 m and 4500 m. Conclusion: It is concluded that the 4AP-sensitive Kv channel does not play a role in pulmonary vascular tone in high-altitude active Tibetan sheep. Their pulmonary vascular oxygen sensing appears not to involve Kv channels. [source] Extracellular ATP inhibits chloride channels in mature mammalian skeletal muscle by activating P2Y1 receptorsTHE JOURNAL OF PHYSIOLOGY, Issue 23 2009Andrew A. VossArticle first published online: 30 NOV 200 ATP is released from skeletal muscle during exercise, a discovery dating back to 1969. Surprisingly, few studies have examined the effects of extracellular ATP on mature mammalian skeletal muscle. This electrophysiological study examined the effects of extracellular ATP on fully innervated rat levator auris longus using two intracellular microelectrodes. The effects of ATP were determined by measuring the relative changes of miniature endplate potentials (mEPPs) and voltage responses to step current pulses in individual muscle fibres. Exposure to ATP (20 ,m) prolonged the mEPP falling phase by 31 ± 7.5% (values ±s.d., n= 3 fibres). Concurrently, the input resistance increased by 31 ± 2.0% and the time course of the voltage responses increased by 59 ± 3.0%. Analogous effects were observed using 2 and 5 ,mATP, and on regions distal from the neuromuscular junction, indicating that physiologically relevant levels of ATP enhanced electrical signalling over the entire muscle fibre. The effects of extracellular ATP were blocked by 200 ,manthracene-9-carboxylic acid, a chloride channel inhibitor, and reduced concentrations of extracellular chloride, indicating that ATP inhibited chloride channels. A high affinity agonist for P2Y receptors, 2-methylthioadenosine-5,- O -diphosphate (2MeSADP), induced similar effects to ATP with an EC50 of 160 ± 30 nm. The effects of 250 nm2MeSADP were blocked by 500 nmMRS2179, a specific P2Y1 receptor inhibitor, suggesting that ATP acts on P2Y1 receptors to inhibit chloride channels. The inhibition of chloride channels by extracellular ATP has implications for muscle excitability and fatigue, and the pathophysiology of myotonias. [source] Role of hydrogen sulphide in haemorrhagic shock in the rat: protective effect of inhibitors of hydrogen sulphide biosynthesisBRITISH JOURNAL OF PHARMACOLOGY, Issue 7 2004Ying-Yuan Pamela Mok Haemorrhagic shock (60 min) in the anaesthetized rat resulted in a prolonged fall in the mean arterial blood pressure (MAP) and heart rate (HR). Pre-treatment (30 min before shock) or post-treatment (60 min after shock) with inhibitors of cystathionine , lyase (CSE; converts cysteine into hydrogen sulphide (H2S)), dl-propargylglycine or , -cyanoalanine (50 mg kg,1, i.v.), or glibenclamide (40 mg kg,1, i.p.), produced a rapid, partial restoration in MAP and HR. Neither saline nor DMSO affected MAP or HR. Plasma H2S concentration was elevated 60 min after blood withdrawal (37.5±1.3 ,m, n=18 c.f. 28.9±1.4 ,m, n=15, P<0.05). The conversion of cysteine to H2S by liver (but not kidney) homogenates prepared from animals killed 60 min after withdrawal of blood was significantly increased (52.1±1.6 c.f. 39.8±4.1 nmol mg protein,1, n=8, P<0.05), as was liver CSE mRNA (2.7 ×). Both PAG (IC50, 55.0±3.2 ,m) and BCA (IC50, 6.5±1.2 ,m) inhibited liver H2S synthesizing activity in vitro. Pre-treatment of animals with PAG or BCA (50 mg kg,1, i.p.) but not glibenclamide (40 mg kg,1, i.p., KATP channel inhibitor) abolished the rise in plasma H2S in animals exposed to 60 min haemorrhagic shock and prevented the augmented biosynthesis of H2S from cysteine in liver. These results demonstrate that H2S plays a role in haemorrhagic shock in the rat. CSE inhibitors may provide a novel approach to the treatment of haemorrhagic shock. British Journal of Pharmacology (2004) 143, 881,889. doi:10.1038/sj.bjp.0706014 [source] Functional Characterisation of the Volume-Sensitive Anion Channel in Rat Pancreatic ,-CellsEXPERIMENTAL PHYSIOLOGY, Issue 2 2001L. Best The whole-cell and perforated patch configurations of the patch-clamp technique were used to characterise the volume-sensitive anion channel in rat pancreatic ,-cells. The channel showed high permeability (P) relative to Cl, to extracellular monovalent organic anions (PSCN/PCll= 1.73, Pacetate/PCll= 0.39, Plactate/PCll= 0.38, Pacetoacetate/PCll= 0.32, Pglutamate/PCll= 0.28) but was less permeable to the divalent anion malate (Pmalate/PCll= 0.14). Channel activity was inhibited by a number of putative anion channel inhibitors, including extracellular ATP (10 mM), 1,9-dideoxyforskolin (100 ,M) and 4-OH tamoxifen (10 ,M). Inclusion of the catalytic subunit of protein kinase A in the pipette solution did not activate the volume-sensitive anion channel in non-swollen cells. Furthermore, addition of 8-bromoadenosine 3,,5,-cyclic monophosphate (8-BrcAMP) or forskolin failed to activate the channel in intact cells under perforated patch conditions. Addition of phorbol 12,13-dibutyrate (200 nM), either before or after cell swelling, also failed to affect channel activation. Our findings do not support the suggestion that the volume-sensitive anion channel in pancreatic ,-cells can be activated by protein kinase A. Furthermore, the ,-cell channel does not appear to be subject to regulation via protein kinase C. [source] Mechanisms involved in the antinociceptive effect caused by diphenyl diselenide in the formalin testJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 12 2008Lucielli Savegnago This study investigated the mechanisms involved in the antinociceptive action induced by diphenyl diselenide ((PhSe)2) in the formalin test. Mice were pre-treated with (PhSe)2 by the oral route (0.1,100 mg kg,1), 30 min before formalin injection. To address some of the mechanisms by which (PhSe)2 inhibits formalin-induced nociception mice were treated with different drugs. The antinociceptive effect of (PhSe)2 was shown in the first and second phases of the formalin test. The antinociceptive effect caused by (PhSe)2 (10 mg kg,1, p.o.) was prevented by intrathecal injection of K+ channel blockers such as apamin and charybdotoxin (small- and large-conductance Ca2+ -activated K+ channel inhibitors, respectively) and tetraethylammonium (TEA, a non-selective voltage-dependent K+ channel inhibitor), but not glib-enclamide (an ATP-sensitive K+ channel inhibitor). The antinociceptive action caused by (PhSe)2 (10 mg kg,1, p.o.) was also blocked by a nitric oxide (NO) synthase inhibitor (N, -nitro- l -arginine, L-NOARG) and the soluble guanylate cyclase inhibitors 1H -[1,2,4]oxadiazolo[4,3- a]quinoxalin-1-one (ODQ) and methylene blue. These results suggest the participation of NO/cyclic GMP/Ca2+ and K+ channel pathways in the antinociceptive effect caused by (PhSe)2. [source] pH regulation in an acidophilic green alga , a quantitative analysisNEW PHYTOLOGIST, Issue 2 2009Birgit Bethmann Summary ,,Short-term cytosolic pH regulation has three components: H+ binding by buffering groups; H+ transport out of the cytosol; and H+ transport into the vacuole. To understand the large differences plants show in their tolerance to acidic environments, these three components were quantified in the acidophilic unicellular green alga Eremosphaera viridis. ,,Intracellular pH was recorded using ion-selective microelectrodes, whereas constant doses of weak acid were applied over different time intervals. A mathematical model was developed that describes the recorded cytosolic pH changes. Recordings of cytosolic K+ and Na+ activities, and application of anion channel inhibitors, revealed which ion fluxes electrically compensate H+ transport. ,,The cytosolic buffer capacity was , = 30 mM. Acidification resulted in a substantial and constant H+ efflux that was probably driven by the plasmalemma H+ -ATPase, and a proportional pH regulation caused by H+ pumped into the vacuole. Under severe cytosolic acidification (, 1 pH) more than 50% of the ATP synthesized was used for H+ pumping. While H+ influx into the vacuole was compensated by cation release, H+ efflux out of the cell was compensated by anion efflux. ,,The data presented here give a complete and quantitative picture of the ion fluxes during acid loading in an acidophilic green plant cell. [source] Temperature-sensitive TREK currents contribute to setting the resting membrane potential in embryonic atrial myocytesTHE JOURNAL OF PHYSIOLOGY, Issue 15 2008Hengtao Zhang TREK channels belong to the superfamily of two-pore-domain K+ channels and are activated by membrane stretch, arachidonic acid, volatile anaesthetics and heat. TREK-1 is highly expressed in the atrium of the adult heart. In this study, we investigated the role of TREK-1 and TREK-2 channels in regulating the resting membrane potential (RMP) of isolated chicken embryonic cardiac myocytes. At room temperature, the average RMP of embryonic day (ED) 11 atrial myocytes was ,22 ± 2 mV. Raising the temperature to 35°C hyperpolarized the membrane to ,69 ± 2 mV and activated a large outwardly rectifying K+ current that was relatively insensitive to conventional K+ channel inhibitors (TEA, 4-AP and Ba2+) but completely inhibited by tetracaine (200 ,m), an inhibitor of TREK channels. The heat-induced hyperpolarization was mimicked by 10 ,m arachidonic acid, an agonist of TREK channels. There was little or no inwardly rectifying K+ current (IK1) in the ED11 atrial cells. In marked contrast, ED11 ventricular myocytes exhibited a normal RMP (,86.1 ± 3.4 mV) and substantial IK1, but no temperature- or tetracaine-sensitive K+ currents. Both RT-PCR and real-time PCR further demonstrated that TREK-1 and TREK-2 are highly and almost equally expressed in ED11 atrium but much less expressed in ED11 ventricle. In addition, immunofluorescence demonstrated TREK-1 protein in the membrane of atrial myocytes. These data indicate the presence and function of TREK-1 and TREK-2 in the embryonic atrium. Moreover, we demonstrate that TREK-like currents have an essential role in determining membrane potential in embryonic atrial myocytes, where IK1 is absent. [source] Effect of anion channel blockers on l- arginine action in spermatozoa from asthenospermic menANDROLOGIA, Issue 2 2010S. Srivastava Summary In earlier studies, we have established that l- arginine enhances motility and metabolic rate in spermatozoa of goat, bull and mouse. In the present study this work was extended to human sperm cells obtained from the semen samples of asthenospermic patients, which are characterised by low motility. The metabolic rate was followed by monitoring the glucose consumption (1- 13C glucose as substrate) and the production of lactate in sperm cells, using 13C NMR. The stimulatory effect of l- arginine was neutralised on adding an NO-synthase inhibitor like N, -nitro- l- arginine methyl ester. On the other hand, the inactive d -enantiomorph did not affect the stimulatory effect of l- arginine. This strongly suggests that l- arginine acts through the NO signal pathway. We also demonstrated that the stimulatory effect of l- arginine was inhibited in the presence of anion channel inhibitors like 4-acetamido-4,-isothiocyanostilbene-2,2,-disulphonic acid, 2,4-dinitrophenol and carbonyl cyanide m-chlorophenylhydrazone. Furthermore, bicarbonate supplementation was found to be essential for the action of l- arginine. These observations indicate that l- arginine induces NO synthesis and stimulates motility and metabolism only when an active anion transport system is present. [source] F90927: A New Member in the Class of Cardioactive SteroidsCARDIOVASCULAR THERAPEUTICS, Issue 3 2007Markus Keller ABSTRACT F90927 is a newly developed cardioactive drug with a steroid-like structure. It acts directly and agonistically on the cardiac L-type Ca2+ channel by shifting its voltage-dependent activation toward more negative potentials. This leads to an increased influx of Ca2+ and, therefore, to a stronger contraction; however, no arrhythmias occur. Calcium current stimulation can already be observed at nanomolar concentrations, but higher concentrations of F90927 elevate intracellular Ca2+ concentration, causing a reduction of the myocardial compliance and an increased diastolic blood pressure. Vessels also react to F90927 and contract in its presence. Binding of F90927 with the L-type Ca2+ channel presumably occurs in the vicinity of the transmembrane domains III and IV of the ,1 subunit. F90927 exhibits no use dependence and interacts with Ca2+ channel inhibitors of all three known classes of channel modulators (dihydropyridines, phenylalkylamines, and benzothiazepines), suggesting that it is a member of a new class of Ca2+ channel modulators. Due to its adverse effects on blood pressure and vessel contraction, F90927 is not an ideal drug candidate. It has, however, some unique properties, which makes it a promising tool to study the function of the L-type Ca2+ channel. [source] Role of Ca2+ mobilization and Ca2+ sensitization in 8-iso-PGF2, -induced contraction in airway smooth muscleCLINICAL & EXPERIMENTAL ALLERGY, Issue 2 2009A. Shiraki Summary Background Isoprostanes are prostaglandin (PG)-like compounds synthesized by oxidative stress, not by cyclooxygenase, and increase in bronchoalveolar lavage fluid of patients with asthma. The airway inflammation implicated in this disease may be amplified by oxidants. Although isoprostanes are useful biomarkers for oxidative stress, the action of these agents on airways has not been fully elucidated. Objective This study was designed to determine the intracellular mechanisms underlying the effects of oxidative stress on airway smooth muscle, focused on Ca2+ signalling pathways involved in the effect of 8-iso-PGF2,. Methods Using simultaneous recording of isometric tension and F340/F380 (an indicator of intracellular concentrations of Ca2+, [Ca2+]i), we examined the correlation between tension and [Ca2+]i in response to 8-iso-PGF2, in the fura-2 loaded tracheal smooth muscle. Results Augmented tension and F340/F380 by 8-iso-PGF2, were attenuated by ICI-192605, an antagonist of thromboxane A2 receptors (TP receptors). Moreover, D609, an antagonist of phosphatidylcholine-specific phospholipase C, markedly reduced both the tension and F340/F380 induced by 8-iso-PGF2,, whereas U73122, an antagonist of phosphatidylinositol-specific phospholipase C, modestly inhibited them by 8-iso-PGF2,. SKF96365, a non-selective antagonist of Ca2+ channels, markedly reduced both tension and F340/F380 by 8-iso-PGF2,. However, diltiazem and verapamil, voltage-dependent Ca2+ channel inhibitors, modestly attenuated tension although their reduction of F340/F380 was not different from that by SKF96365. Y-27632, an inhibitor of Rho-kinase, significantly attenuated contraction induced by 8-iso-PGF2, without reducing F340/F380, whereas GF109203X and Go6983, protein kinase C inhibitors, did not markedly antagonize them although reducing F340/F380 with a potency similar to Y-27632. Conclusion 8-iso-PGF2, causes airway smooth muscle contraction via activation of TP receptors. Ca2+ mobilization by SKF96365- and D609-sensitive Ca2+ influx and Ca2+ sensitization by Rho-kinase contribute to the intracellular mechanisms underlying the action of 8-iso-PGF2,. Rho-kinase may be a therapeutic target for the physiologic abnormalities induced by oxidative stress in airways. [source] Treatment of epidemic and pandemic influenza with neuraminidase and M2 proton channel inhibitorsCLINICAL MICROBIOLOGY AND INFECTION, Issue 1 2003J. S. Oxford A small armentarium of anti-influenza drugs now exists, and includes the M2 blockers (amantadine and rimantadine) and the neuraminidase inhibitors (Relenza and Tamiflu). The neuraminidase inhibitors have certain advantages, including a broader spectrum of antiviral activity, including influenza A and B viruses. On the other hand, there is now much clinical experience with the M2 blockers, and these drugs are inexpensive. It is clear that influenza in different community groups needs to be managed in specific and targeted ways. For example, in the over-65-years and at-risk groups, vaccination will remain a mainstay of disease prevention. However, up to 40% of those in these groups may fail to receive vaccine, and therefore the antivirals can be used therapeutically, or, in defined circumstances, as prophylactics. At present, influenza is hardly managed in the community. The infrequent global outbreaks, pandemics, present further problems. The more extensive use of the two classes of antivirals, and also vaccines, in the important interpandemic years will provide a very significant investment in health benefits in the face of a new pandemic virus in an otherwise completely vulnerable population. [source] |