Home About us Contact | |||
Channel Features (channel + feature)
Selected AbstractsFlow-substrate interactions create and mediate leaf litter resource patches in streamsFRESHWATER BIOLOGY, Issue 3 2006TRENT M. HOOVER Summary 1. The roles that streambed geometry, channel morphology, and water velocity play in the retention and subsequent breakdown of leaf litter in small streams were examined by conducting a series of field and laboratory experiments. 2. In the first experiment, conditioned red alder (Alnus rubra Bongard) leaves were released individually in three riffles and three pools in a second-order stream. The transport distance of each leaf was measured. Several channel and streambed variables were measured at each leaf settlement location and compared with a similar number of measurements taken at regular intervals along streambed transects (,reference locations'). Channel features (such as water depth) and substrate variables (including stone height, stone height-to-width ratio, and relative protrusion) were the most important factors in leaf retention. 3. In the second experiment, the role of settlement location and reach type in determining the rate of leaf litter breakdown was examined by placing individual conditioned red alder leaves in exposed and sheltered locations (on the upper and lower edges of the upstream face of streambed stones, respectively) in riffle and pool habitats. After 10 days, percent mass remaining of each leaf was measured. Generally, leaves broke down faster in pools than in riffles. However, the role of exposure in breakdown rate differed between reach types (exposed pool > sheltered pool > sheltered riffle > exposed riffle). 4. In the third experiment, the importance of substrate geometry on leaf litter retention was examined by individually releasing artificial leaves upstream of a series of substrate models of varying shape. Substrates with high-angle upstream faces (were vertical or close to vertical), and that had high aspect ratios (were tall relative to their width), retained leaves more effectively. 5. These results show that streambed morphology is an important factor in leaf litter retention and breakdown. Interactions between substrate and flow characteristics lead to the creation of detrital resource patchiness, and may partition leaf litter inputs between riffles and pools in streams at baseflow conditions. [source] Restoration effort, habitat mosaics, and macroinvertebrates , does channel form determine community composition?AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 2 2009Sonja C. Jähnig Abstract 1.In certain lower mountainous regions of Germany multiple-channel streams constitute the reference condition for stream restoration and conservation efforts. An increasing number of restoration projects re-establish such stream sections, but their impact on macroinvertebrate communities remains vague and needs further elaboration. 2.Seven pairs of single- and multiple-channel sections of mountain rivers were compared in terms of hydromorphology and macroinvertebrate communities. The stream sections were characterized by 16 hydromorphological metrics at various scales, e.g. shore length, channel feature or substrate diversity, flow variability and substrate coverage. Macroinvertebrate data were obtained from 140 substrate-specific samples, which were combined to form representative communities for each section. Community data were subject to similarity and cluster analyses. Thirty-five metrics were calculated with the taxa lists, including number of taxa, abundance, feeding type, habitat and current preferences. 3.Bray,Curtis similarity was very high (69,77%) between communities of single- and multiple-channel sections. Biological metrics were correlated with hydromorphological parameters. Mean Spearman rank r was 0.59 (absolute values). The biological metrics percentage of the community preferring submerged vegetation, being grazers and scrapers or active filter feeders, percentage of epipotamal preference and the percentage of current preference (rheo- to limnophil and rheobiont) were significantly correlated with hydromorphological parameters. 4.Differences between stream sections can be attributed to single taxa occurring only in either the single- or multiple-channel sections. These exclusive taxa were mainly found on organic substrates such as living parts of terrestrial plants, large wood, coarse particulate organic matter (CPOM) and mud. Reasons for high similarity of macroinvertebrate communities from single- or multiple-channel sections are discussed, including the influence of large-scale catchment pressures, length of restored sections and lack of potential re-colonizers. Copyright © 2008 John Wiley & Sons, Ltd. [source] Geostatistical analysis of ground-survey elevation data to elucidate spatial and temporal river channel changeEARTH SURFACE PROCESSES AND LANDFORMS, Issue 4 2003Adrian Chappell Abstract A digital elevation model (DEM) of a fluvial environment represented landform surface variability well and provided a medium for monitoring morphological change over time. Elevation was measured above an arbitrary datum using a ground-based three-dimensional tacheometric survey in two reaches of the River Nent, UK, in July 1998, October 1998 (after flood conditions) and June 1999. A detailed geostatistical analysis of the elevation data was used to model the spatial variation of elevation and to produce DEMs in each reach and for each survey period. Maps of the difference in elevation were produced and volumetric change was calculated for each reach and each survey period. The parameters of variogram models were used to describe the morphological character of each reach and to elucidate the linkages between process and the form of channel change operating at different spatial and temporal scales. The analysis of channel change on the River Nent shows the potential of geostatistics for investigating the magnitude and frequency of geomorphic work in other rivers. A flood modified the channel features, but low magnitude and high frequency flows rationalized the morphology. In spite of relatively small amounts of net flux the channel features changed as a consequence of the reworking of existing material. The blocking of chute entrances and redirection of the channel had a considerable effect on the behaviour of the channel. Such small changes suggested that the distributary system was sensitive to variation in sediment regime. Plots of the kriging variances against sampling intervals were used to quantify the temporal variation in sampling redundancy (ranging between ,11 per cent and +93 per cent). These curves illustrated the importance of bespoke sampling designs to reduce sampling effort by incorporating anisotropic variation in space and geomorphic information on flow regime. Variation in the nugget parameter of the variogram models was interpreted as sampling inaccuracy caused by variability in particle size and is believed to be important for future work on surface roughness. Copyright © 2003 John Wiley & Sons, Ltd. [source] Evaluating the effects of riparian restoration on a temperate river-system using standardized habitat surveyAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue S1 2010E. Clews Abstract 1.The restoration of degraded riparian zones to improve a range of functions is attracting increasing interest, but there are still questions about (i) how effectively restoration changes riparian or channel conditions; (ii) whether riparian management offsets the effects of wider catchment pressures; and (iii) whether these effects can be detected quantitatively. 2.A catchment-scale experiment was used to assess the effects of riparian restoration on riparian and channel conditions in the Welsh River Wye. In a hierarchically designed survey, variations in river habitat character were assessed among tributaries where riparian zones were recently managed for restoration (n=9 streams), unmanaged controls (n=12), intensively grazed pastures (n=3) and coniferous plantation (n=3). Management between 1997 and 2003, largely involving coppicing, was designed to exclude grazing through fencing in order to enable vegetation development while creating salmonid refuges. River habitat character was assessed using the UK ,River Habitat Survey' (RHS) method, with habitat variation quantified using Principal Components Analysis. 3.Stream habitats varied significantly among treatment categories. Streams draining plantation conifer had ,harder' channel features, while those draining intensively grazed pasture were characterized by finer substrata and more active channels than elsewhere. Riparian management reduced livestock trampling (= poaching) and increased algal cover relative to controls. Coppicing and riparian fencing successfully excluded grazing on banks while increasing in-stream vegetation cover, but did not affect substrata, flow-types and channel features. 4.These data show that RHS can detect habitat variation among streams in contrasting riparian land-use, revealing some apparently significant effects of recent restoration. We advocate longer-term investigations at reach to catchment scales to assess longer-term effects on channel and flow character, and to appraise fully the extent to which local riparian management can offset impairments at a catchment or larger scale, such as altered run-off regimes, sediment delivery and climate change. Copyright © 2010 John Wiley & Sons, Ltd. [source] |