Channel Blocker Verapamil (channel + blocker_verapamil)

Distribution by Scientific Domains


Selected Abstracts


Effects of EP1 receptor on cerebral blood flow in the middle cerebral artery occlusion model of stroke in mice

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 11 2007
Sofiyan Saleem
Abstract The lipid mediator prostaglandin E2 (PGE2) exhibits diverse biologic activity in a variety of tissues. Four PGE2 receptor subtypes (EP1,4) are involved in various physiologic and pathophysiologic conditions, but differ in tissue distribution, ligand-binding affinity, and coupling to intracellular signaling pathways. To characterize the role of the EP1 receptor, physiologic parameters (mean arterial blood pressure, pH, blood gases PaO2 and PaCO2, and body temperature), cerebral blood flow (CBF), and neuronal cell death were studied in a middle cerebral artery occlusion model of ischemic stroke in wild-type (WT) and EP1 knockout (EP1,/,) mice. The right middle cerebral artery was occluded for 60 min, and absolute CBF was measured by [14C] iodoantipyrine autoradiography. The effect of EP1 receptor on oxidative stress in neuronal cultures was investigated. Although no differences were observed in the physiologic parameters, CBF was significantly (P < 0.01) higher in EP1,/, mice than in WT mice, suggesting a role for this receptor in physiologic and pathophysiologic control of vascular tone. Similarly, neuronal cultures derived from EP1,/, mice were more resistant (90.6 ± 5.8% viability) to tert -butyl hydroperoxide-induced oxidative stress than neurons from WT mice (39.6 ± 17.2% viability). The EP1 receptor antagonist SC-51089 and calcium channel blocker verapamil each attenuated the neuronal cell death induced by PGE2. Thus, the prostanoid EP1 receptor plays a significant role in regulating CBF and neuronal cell death. These findings suggest that pharmacologic modulation of the EP1 receptor might be a means to improve CBF and neuronal survival during ischemic stroke. © 2007 Wiley-Liss, Inc. [source]


Hyperosmotic mannitol induces Src kinase-dependent phosphorylation of ,-catenin in cerebral endothelial cells

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2005
Attila Farkas
Abstract Mannitol, which is a cell-impermeable and nontoxic polyalcohol, has been shown to be a useful tool for reversible opening of the blood,brain barrier (BBB). Despite successful clinical trials, the molecular mechanism of the mannitol-induced changes in cerebral endothelial cells (CECs) are poorly understood. For our experiments, we used CECs in culture, which were treated with different, clinically relevant concentrations of mannitol. We found that mannitol induced a rapid, concentration-dependent, and reversible tyrosine phosphorylation of a broad range of proteins between 50 and 190 kDa. One of the targets of tyrosine phosphorylation turned out to be the adherens junction protein ,-catenin. Phosphorylation of ,-catenin on tyrosine residues caused its subcellular redistribution and its dissociation from cadherin and ,-catenin as shown by coimmunoprecipitation studies. All these effects could be inhibited by the Src kinase inhibitor PP-1 but not by the Erk inhibitor U0126, the Rho kinase inhibitor Y27632, or the calcium channel blocker verapamil. Because ,-catenin is a key component of the junctional complex, its Src-mediated phpsphorylation may play an important role in the mannitol induced reversible opening of the BBB. © 2005 Wiley-Liss, Inc. [source]


Scutellarin-induced endothelium-independent relaxation in rat aorta

PHYTOTHERAPY RESEARCH, Issue 11 2008
Zhenwei Pan
Abstract Scutellarin is a flavonoid extracted from the traditional Chinese herb, Erigeron breviscapus Hand Mazz. In the present study, the vasorelaxant effects of scutellarin and the underlying mechanism were investigated in isolated rat aorta. Scutellarin (3, 10, 30, 100 µm) caused a dose-dependent relaxation in both endothelium-intact and endothelium-denuded rat aortic rings precontracted with noradrenaline bitartrate (IC50 = 7.7 ± 0.6 µm), but not with potassium chloride. Tetraethylammonium, glibenclamide, atropine, propranolol, indomethacin and N(G)-nitro- l -arginine methyl ester had no influence on the vasorelaxant effect of scutellarin, which further excluded the involvement of potassium channels, muscarinic receptor, nitric oxide pathway and prostaglandin in this effect. Pretreatment with scutellarin decreased the tonic phase, but not the phasic phase of the noradrenaline bitartrate induced tension increment. Scutellarin also alleviated Ca2+ -induced vasoconstriction in Ca2+ -depleted/noradrenaline bitartrate pretreated rings in the presence of voltage-dependent calcium channel blocker verapamil. The noradrenaline bitartrate evoked intracellular calcium increase was inhibited by scutellarin. Scutellarin had no effect on phorbol-12,13-diacetate induced contraction in a calcium-free bath solution. These results showed that scutellarin could relax thoracic artery rings in an endothelium-independent manner. The mechanism seems to be the inhibition of extracellular calcium influx independent of the voltage-dependent calcium channel. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Pre- and postsynaptic contributions of voltage-dependent Ca2+ channels to nociceptive transmission in rat spinal lamina I neurons

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2004
B. Heinke
Abstract Activation of voltage-dependent Ca2+ channels (VDCCs) is critical for neurotransmitter release, neuronal excitability and postsynaptic Ca2+ signalling. Antagonists of VDCCs can be antinociceptive in different animal pain models. Neurons in lamina I of the spinal dorsal horn play a pivotal role in the processing of pain-related information, but the role of VDCCs to the activity-dependent Ca2+ increase in lamina I neurons and to the synaptic transmission between nociceptive afferents and second order neurons in lamina I is not known. This has now been investigated in a lumbar spinal cord slice preparation from young Sprague,Dawley rats. Microfluorometric Ca2+ measurements with fura-2 have been used to analyse the Ca2+ increase in lamina I neurons after depolarization of the cells, resulting in a distinct and transient increase of the cytosolic Ca2+ concentration. This Ca2+ peak was reduced by the T-type channel blocker, Ni2+, by the L-type channel blockers, nifedipine and verapamil, and by the N-type channel blocker, ,-conotoxin GVIA. The P/Q-type channel antagonist, ,-agatoxin TK, had no effect on postsynaptic [Ca2+]i. The NMDA receptor channel blocker D-AP5 reduced the Ca2+ peak, whereas the AMPA receptor channel blocker CNQX had no effect. Postsynaptic currents, monosynaptically evoked by electrical stimulation of the attached dorsal roots with C-fibre and A,-fibre intensity, respectively, were reduced by N-type channel blocker ,-conotoxin GVIA and to a much lesser extent, by P/Q-type channel antagonist ,-agatoxin TK, and the L-type channel blockers verapamil, respectively. No difference was found between unidentified neurons and neurons projecting to the periaqueductal grey matter. This is the first quantitative description of the relative contribution of voltage-dependent Ca2+ channels to the synaptic transmission in lamina I of the spinal dorsal horn, which is essential in the processing of pain-related information in the central nervous system. [source]