Home About us Contact | |||
Acute Toxicity Testing (acute + toxicity_testing)
Selected AbstractsMouse toxicity of Anabaena flos-aquae from Lake Dianchi, ChinaENVIRONMENTAL TOXICOLOGY, Issue 1 2009Xiaojie Pan Abstract Some species of the genera Anabaena can produce various kinds of cyanotoxins, which may pose risks to environment and human health. Anabaena has frequently been observed in eutrophic freshwater of China in recent years, but its toxicity has been reported only in a few studies. In the present study, the toxicity of an Anabaena flos-aquae strain isolated from Lake Dianchi was investigated. Acute toxicity testing was performed by mouse bioassay using crude extracts from the lyophilized cultures. The mice exposed to crude extracts showed visible symptoms of toxicity and died within 10,24 h of the injection. Serum biochemical parameters were evaluated by the use of commercial diagnostic kits. Significant alterations were found in the serum biochemical parameters: alkaline phosphatase (AKP), ,-glutamyl transpeptidase (,-GT), aspartate amino transferase (AST), alanine amino transferase (ALT), AST/ALT ratio, total protein content, albumin content, albumin/globulin (A/G) ratio, blood urea nitrogen (BUN), serum creatinine (Ssr), and total antioxidative capacity (T-AOC). Histopathological observations were carried out with hematoxylin and eosin (HE) stain under light microscope. Severe lesions were seen in the livers, kidneys, and lungs of the mice injected with crude extracts. The alterations of biochemical parameters were in a dose-dependent manner, and the severities of histological lesions were in the same manner. Based on biochemical and histological studies, this research firstly shows the presence of toxin-producing Anabaena species in Lake Dianchi and the toxic effects of its crude extracts on mammals. © 2008 Wiley Periodicals, Inc. Environ Toxicol, 2009. [source] Alternative approaches can greatly reduce the number of fish used for acute toxicity testingENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2006Conny C. Hoekzema Abstract Acute toxicity tests with algae, daphnids, and fish are required for the classification and environmental risk assessment of chemicals. The degree of risk is determined by the lowest of these acute toxicity values. Many ecotoxicological programs are seeking to reduce the numbers of fish used in acute toxicity testing. The acute threshold test is a recently proposed strategy that uses, on average, only 10 (instead of 54) fish per chemical. We examined the consequences of reducing the number of fish used in toxicity testing on the ultimate outcome of risk assessments. We evaluated toxicity data sets for 507 compounds, including agrochemicals, industrial chemicals, and pharmaceuticals from our internal database. Theoretical applications of the acute threshold test gave similar results to those obtained with the standard fish median lethal concentration (LC50) test but required only 12% as many fish (3,195 instead of 27,324 fish used for all compounds in the database). In 188 (90%) of the 208 cases for which a complete data set was available, the median effect concentration for algae or daphnids was lower than the LC50 for fish. These results show that replacement of the standard fish LC50 test by the acute threshold test would greatly reduce the number of fish needed for acute ecotoxicity testing without any loss of reliability. [source] Effects of nitrate nitrogen pollution on Central European unionid bivalves revealed by distributional data and acute toxicity testingAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 2 2010Karel Douda Abstract 1.Studies from Central Europe have shown a relationship between the impaired population status of threatened freshwater mussel species and elevated nitrate nitrogen (N,NO) concentrations in running waters. 2.Causal mechanisms, however, remain unknown, and no experimental data or comprehensive studies involving more species are available, which causes uncertainty in prioritizing conservation actions. 3.This study uses both descriptive and experimental approaches to identify the effects of nitrates on freshwater mussels and demonstrates the need for integrating different research methods for development of conservation strategies for threatened species. 4.Spatial co-occurrence of five native freshwater mussel species (Anodonta anatina, Pseudanodonta complanata, Unio pictorum, Unio tumidus, Unio crassus) and N,NO concentrations were examined in a 7th-order river catchment (Lu,nice River, Czech Republic) with anthropogenically-induced increasing N,NO levels and declining populations of these species during the 20th century. 5.Acute toxicity of N,NO was then estimated for artificially reared juveniles of A. anatina and U. crassus using both lethal and sublethal test endpoints. 6.Results showed that the probability of occurrence of all species was significantly reduced in reaches with elevated N,NO levels. 7.In contrast, the results of toxicity testing revealed that the juvenile stages of the two tested species were less sensitive to N,NO than most previously tested freshwater macroinvertebrates. The detected 96-h median lethal N,NO concentrations were two orders of magnitude higher than the limits derived from distributional data. 8.Despite the probable absence of a direct negative effect of N,NO on freshwater mussel populations, N,NO has potential to be used as an effective indicator of biotope conditions. Identification of causal mechanisms responsible for the observed relationship between unionids and N,NO will require further research. Copyright © 2009 John Wiley & Sons, Ltd. [source] |