Acute Regulatory Protein (acute + regulatory_protein)

Distribution by Scientific Domains

Kinds of Acute Regulatory Protein

  • steroidogenic acute regulatory protein


  • Selected Abstracts


    Interactions of orexins/hypocretins with adrenocortical functions

    ACTA PHYSIOLOGICA, Issue 3 2010
    S. M. Kagerer
    Abstract The neuropeptides orexin A and B (hypocretin-1 and -2) are involved in numerous central regulation processes such as energy homeostasis, sleeping behaviour and addiction. The expression of orexins and orexin receptors in a variety of tissues outside the brain and the presence of orexin A in the circulation indicate the existence of an additional peripheral orexin system. Furthermore, it is well established that orexins exert an influence on the regulation of the hypothalamus,pituitary,adrenal axis, acting both on its central and peripheral branch. In rat and human adrenal cortices the expression of both orexin receptors has been verified with a predominance of OX2R. The local expression of orexin receptors was observed to be gender specific and to be modified by plasma glucose and insulin concentrations, nutritional status as well as gonadal steroids. Various studies consistently demonstrated orexin A to enhance glucocorticoid secretion of rat and human adrenal cortices, while orexin B was found to be either less potent or ineffective. On the contrary, the influence of orexins on adrenocortical aldosterone production and cell proliferation is still more controversial. Recent findings indicate that orexins stimulate adrenocortical steroidogenesis by augmenting transcription of selective steroidogenic enzymes and proteins such as steroidogenic acute regulatory protein. Both, Gq and Gs, signalling pathways with a downstream activation of MAP kinases appear to be involved in this regulation. [source]


    Neonatal estrogen exposure inhibits steroidogenesis in the developing rat ovary

    DEVELOPMENTAL DYNAMICS, Issue 4 2001
    Yayoi Ikeda
    Abstract Treatment of newborn female rats with estrogens significantly inhibits the growth and differentiation of the ovary. To understand the molecular mechanism of estrogen action in the induction of abnormal ovary, we examined the expression profiles of steroidogenic factor 1 (SF-1) and several of its target genes in the developing ovaries after neonatal exposure to synthetic estrogen, estradiol benzoate (EB) by using reverse transcriptase polymerase chain reaction, in situ hybridization, and immunohistochemistry. Morphologic examination indicated inhibitory effects of estrogen on the stratification of follicles and development of theca and interstitial gland during postnatal ovarian differentiation. The expression of the steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage cytochrome P450 (P450SCC), which are both essential for steroid biosynthesis, markedly decreased in theca and interstitial cells throughout the postnatal development of the EB-treated ovary. However, expression of the transcriptional activator of the two genes, SF-1 was unaffected in theca and interstitial cells, although the number of these cells was lower in the EB-treated ovary than in the control ovary. The expression of the estrogen mediator, estrogen receptor-, (ER-,), diminished specifically in theca cells at P6 and recovered by P14 in the EB-treated ovary. These results indicate that the effect of estrogens is mediated by means of ER-, resulting in the down-regulation of StAR and P450SCC genes during early postnatal development of the ovary. These results suggest that the abnormal ovarian development by neonatal estrogen treatment is closely correlated with the reduced steroidogenic activity, and the data obtained by using this animal model may account in part the mechanism for aberrant development and function of the ovary in prenatally estrogen-exposed humans. © 2001 Wiley-Liss, Inc. [source]


    Effects of brominated flame retardants and brominated dioxins on steroidogenesis in H295R human adrenocortical carcinoma cell line

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2007
    Ling Ding
    Abstract Brominated flame retardants (BFRs) and brominated dioxins are emerging persistent organic pollutants that are ubiquitous in the environment and can be accumulated by wildlife and humans. These chemicals can disturb endocrine function. Recent studies have demonstrated that one of the mechanisms of endocrine disruption by chemicals is modulation of steroidogenic gene expression or enzyme activities. In this study, an in vitro assay based on the H295R human adrenocortical carcinoma cell line, which possesses most key genes or enzymes involved in steroidogenesis, was used to examine the effects of five bromophenols, two polybrominated biphenyls (PBBs 77 and 169), 2,3,7,8-tetrabromodibenzo- p -dioxin, and 2,3,7,8-tetrabromodibenzofuran on the expression of 10 key steroidogenic genes. The H295R cells were exposed to various BFR concentrations for 48 h, and the expression of specific genes,cytochrome P450 (CYP11A, CYP11B2, CYP17, CYP19, and CYP21), 3,-hydroxysteroid dehydrogenase (3,HSD2), 17,-hydroxysteroid dehydrogenase (17,HSD1 and 17,HSD4), steroidogenic acute regulatory protein (StAR), and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR),was quantitatively measured using real-time polymerase chain reaction. Cell viability was not affected at the doses tested. Most of the genes were either up- or down-regulated, to some extent, by BFR exposure. Among the genes tested, 3,HSD2 was the most markedly up-regulated, with a range of magnitude from 1.6- to 20-fold. The results demonstrate that bromophenol, bromobiphenyls, and bromodibenzo- p -dioxin/furan are able to modulate steroidogenic gene expression, which may lead to endocrine disruption. [source]


    Cholesterol-promoted synaptogenesis requires the conversion of cholesterol to estradiol in the hippocampus

    HIPPOCAMPUS, Issue 8 2009
    Lars Fester
    Abstract Cholesterol of glial origin promotes synaptogenesis (Mauch et al., (2001) Science 294:1354,1357). Because in the hippocampus local estradiol synthesis is essential for synaptogenesis, we addressed the question of whether cholesterol-promoted synapse formation results from the function of cholesterol as a precursor of estradiol synthesis in this brain area. To this end, we treated hippocampal cultures with cholesterol, estradiol, or with letrozole, a potent aromatase inhibitor. Cholesterol increased neuronal estradiol release into the medium, the number of spine synapses in hippocampal slice cultures, and immunoreactivity of synaptic proteins in dispersed cultures. Simultaneous application of cholesterol and letrozole or blockade of estrogen receptors by ICI 182 780 abolished cholesterol-induced synapse formation. As a further approach, we inhibited the access of cholesterol to the first enzyme of steroidogenesis by knock-down of steroidogenic acute regulatory protein, the rate-limiting step in steroidogenesis. A rescue of reduced synaptic protein expression in transfected cells was achieved by estradiol but not by cholesterol. Our data indicate that in the hippocampus cholesterol-promoted synapse formation requires the conversion of cholesterol to estradiol. © 2009 Wiley-Liss, Inc. [source]


    Steroidogenic gene expression in H295R cells and the human adrenal gland: adrenotoxic effects of lindane in vitro

    JOURNAL OF APPLIED TOXICOLOGY, Issue 6 2006
    Agneta Oskarsson
    Abstract The focus on the refinement, reduction and replacement of animal use in toxicity testing requires the development of cell-based systems that mimic the effects of xenobiotics in human tissues. The human adrenocortical carcinoma cell line, H295R, has been proposed as a model for studies on adrenal steroidogenesis and its disruption. In this study, expression profiles for nine adrenal steroidogenic genes were characterized in H295R cells using real-time RT-PCR. Treatment with forskolin increased cortisol secretion and stimulated transcription of all the steroidogenic genes except SULT2A1. The transcript profile from H295R cells in the presence and absence of forskolin was compared with the transcript profile from human adrenal glands. The gene expression pattern observed in the forskolin-treated H295R cells was more similar to that in the human adrenal gland, than the expression pattern in untreated cells. To examine H295R cells as a possible in vitro system for the assessment of adrenal disruption using molecular endpoints, the insecticide lindane (, -hexachlorocyclohexane) was used. In vivo, lindane has been shown to inhibit testicular, ovarian and adrenal steroidogenesis. It was demonstrated that lindane reduced cortisol secretion, downregulated the expression of a subset of the genes encoding steroidogenic enzymes and repressed transcriptional activation of the steroidogenic acute regulatory protein (StAR) gene promoter. Thus the H295R cell line provides a good in vitro system for the analysis of the human adrenal steroidogenic pathway at the level of hormone production and gene expression. This in vitro test can be used for the rapid detection of adrenal endocrine disruption and as a tool for mechanistic studies. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Corticosterone induces steroidogenic lesion in cultured adult rat leydig cells by reducing the expression of star protein and steroidogenic enzymes

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2008
    Srinivasan Rengarajan
    Abstract The present study was designed to investigate the dose-dependent direct effect of corticosterone on adult rat Leydig cell steroidogenesis in vitro. Leydig cells were isolated from the testis of normal adult male albino rats, purified on discontinuous Percoll gradient and plated in culture plates/flasks overnight at 34°C in a CO2 incubator under 95% air and 5% CO2 using DME/F12 medium containing 1% fetal bovine serum. After the attachment of cells, serum-containing medium was removed and cells were exposed to different doses (0, 50, 100, 200, 400, and 800 nM) of corticosterone using serum-free fresh medium for 24 h at 34°C. At the end of exposure period, cells were utilized for assessment of the activities and mRNA expression of steroidogenic enzymes (cytochrome P450 side chain cleavage enzyme, 3,-hydroxysteroid dehydrogenase, 17,-hydroxysteroid dehydrogenase, and cytochrome P450 aromatase) and steroidogenic acute regulatory protein gene expression. Testosterone and estradiol production were also quantified. Activities of cytochrome P450 side chain cleavage enzyme, 3,- and 17,-hydroxysteroid dehydrogenases were declined significantly in a dose-dependent manner after corticosterone exposure, while their mRNA expression were significantly reduced at higher doses of corticosterone exposure. The activity and mRNA expression of cytochrome P450 aromatase registered a significant increase at 100 nM dose of corticosterone whereas at 200,800 nM doses both the activity as well as the mRNA levels was significantly reduced below the basal level. StAR protein gene expression was significantly inhibited by higher doses of corticosterone employed. At all doses employed, corticosterone significantly reduced the production of testosterone by Leydig cells, while estradiol level registered a significant increase at 50 and 100 nM doses but at higher doses, it registered a significant decrease when compared to basal level. It is concluded from the present in vitro study that the molecular mechanism by which corticosterone reduces the production of Leydig cell testosterone is by reducing the activities and mRNA expression of steroidogenic enzymes and steroidogenic acute regulatory protein. J. Cell. Biochem. 103: 1472,1487, 2008. © 2007 Wiley-Liss, Inc. [source]


    Transcriptional profiling using a novel cDNA array identifies differential gene expression during porcine embryo elongation

    MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 2 2005
    So Hyun Lee
    Abstract A novel porcine cDNA array, containing 1,015 PCR products selected for embryonic expression, was used for transcriptional profiling of conceptuses at four stages of peri-implantation development. Total conceptus RNA from small spherical, large spherical, tubular, and filamentous stages was amplified, converted to cDNA, and hybridized to membranes. Initially, normalized signal intensities obtained using cDNA from total RNA or from amplified RNA were compared. Uniform distribution of P -values associated with t -tests conducted for each gene indicated no evidence that amplification introduced bias. Analysis of data obtained by using amplified targets and the novel array identified genes differentially expressed across stages. Such genes were identified by testing for significant stage effects in gene-specific mixed models. A total of nine genes were declared differentially expressed. Six of the nine genes had P -values less than 0.001, and a false discovery rate of approximately 17% was associated with this significance threshold. Two out of six genes were significant when using the Bonferroni method to control the probability of one or more false positives. The other three genes had P -values between 0.001 and 0.01 and exhibited differences greater than twofold between stages. All four genes selected for confirmation (steroidogenic acute regulatory protein, interleukin 1 beta, transforming growth factor beta 3, and thymosin beta 10) were shown to be differentially expressed by using quantitative real time RT-PCR. Our study shows that RNA amplification is useful for transcriptional profiling with limiting porcine embryonic RNA, and that this novel targeted array can detect differential gene expression during trophoblastic elongation. Finally, our results contribute to an increased understanding of the temporal patterns of expression of known genes controlling conceptus development, as well as identify novel genes also differentially regulated during implantation. Mol. Reprod. Dev. 71: 129,139, 2005. © 2005 Wiley-Liss, Inc. [source]


    Arachidonic acid activation of intratumoral steroid synthesis during prostate cancer progression to castration resistance

    THE PROSTATE, Issue 3 2010
    Jennifer A. Locke
    Abstract BACKGROUND De novo androgen synthesis and subsequent androgen receptor (AR) activation has recently been shown to contribute to castration-resistant prostate cancer (CRPC) progression. Herein we provide evidence that fatty acids (FA) can trigger androgen synthesis within steroid starved prostate cancer (CaP) tumor cells. METHODS Tumoral FA and steroid levels were assessed by GC,MS and LC,MS, respectively. Profiles of genes and proteins involved in FA activation of steroidogenesis were assessed by fluorescence microscopy, immunohistochemistry, microarray expression profiling and Western blot analysis. RESULTS In human CaP tissues the levels of proteins responsible for FA activation of steroid synthesis were observed to be altered during progression to CRPC. Further investigating this mechanism in LNCaP cells, we demonstrate that specific FA, arachidonic acid, is synthesized in an androgen-dependent and AR-mediated manner. Arachidonic acid is known to induce steroidogenic acute regulatory protein (StAR) in steroidogenic cells. When bound to hormone sensitive lipase (HSL), StAR shuttles free cholesterol into the mitochondria for downstream conversion into androgens. We show that arachidonic acid induces androgen production in steroid starved LNCaP cells coincidently in the same conditions that HSL and StAR are predominantly localized in the mitochondria. Furthermore, their activities are verified by a functional increase in mitochondrial uptake of cholesterol in this steroid starved environment. CONCLUSIONS We propose that this characterized arachidonic acid induced steroidogenesis mechanism significantly contributes to the activation of AR in CRPC progression and therefore recommend that fatty acid pathways be targeted therapeutically in progressing CaP. Prostate 70: 239,251, 2010. © 2009 Wiley-Liss, Inc. [source]


    Initiation of Steroidogenesis Precedes Expression of Cholesterologenic Enzymes in the Fetal Mouse Testes

    ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 6 2009
    T. Büdefeld
    Summary Sexual differentiation is a carefully regulated process that ultimately results in a development of the male or female phenotype. Proper development of the male phenotype is dependent upon the action of testosterone and anti-mullerian hormone. Leydig cells start to produce testosterone around day 12.5 in the fetal mouse testis, and continue to produce high levels of this hormone throughout gestation. In the present study, we examined whether expression of lanosterol 14,-demethylase (cyp51) and cytochrome P450 NADPH reductase, both involved in the cholesterol production, occurs simultaneously with proteins required for the production of steroid hormones. Immunocytochemical staining with the antibodies against cyp51, cytochrome P450 NADPH reductase, steroidogenic acute regulatory protein (StAR) and 3beta-hydroxysteroid dehydrogenase I (3,-HSD I) was used to determine the ontogeny of expression of these four proteins. As expected, 3,-HSD I and StAR proteins were detected on day 12.5 p.c., while expression of cyp51 and NADPH cytochrome P450 reductase appeared 1 day later, on day 13.5. Thereafter, the expression of all four proteins remained strong throughout gestation. Results of this study suggest that initial steps of steroid hormone production in murine Leydig cells are mostly dependent on exogenously derived cholesterol, while from day 13.5 onwards, mouse Leydig cells are able to synthesize cholesterol and are therefore not dependent on exogenous cholesterol resources. [source]


    Differential effects of antiepileptic drugs on steroidogenesis in a human in vitro cell model

    ACTA NEUROLOGICA SCANDINAVICA, Issue 2009
    M. W. Gustavsen
    Objectives, To better understand the interaction of antiepileptic drugs and production of sex hormones, possible effects of valproate (VPA), levetiracetam (LEV) and carbamazepine (CBZ) on steroidogenesis were investigated in the human adrenal carcinoma cell line H295R. Materials and methods, H295R cells were exposed to different concentrations of VPA, LEV or CBZ for 48 h. Sex hormone concentrations and mRNA expression levels were analyzed via radioimmunoassay and quantitative real time (RT)-PCR, respectively. Results, In VPA-exposed cells estradiol levels decreased in a dose-dependent manner, while testosterone and progesterone levels were unaffected. Expression of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR), steroidogenic acute regulatory protein (StAR), CYP11a, CYP17, CYP21, 3,HSD2, 17,HSD1 was downregulated and expression of CYP11,2 was upregulated. No effect on sex hormone production was observed under influence of LEV or CBZ. Expression of StAR, CYP17, CYP19 and 3,HSD2 was downregulated in LEV-exposed cells, and expression of HMGR, CYP11,2 and CYP17 was downregulated in CBZ-exposed cells. Conclusions, VPA exposure resulted in a decrease in estradiol levels and a general downregulation of expression of genes encoding for enzymes early in steroidogenesis. No consistent changes were seen with LEV or CBZ exposure. [source]


    Structure of a conserved hypothetical protein, TTHA0849 from Thermus thermophilus HB8, at 2.4,Å resolution: a putative member of the StAR-related lipid-transfer (START) domain superfamily

    ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 12 2005
    Makoto Nakabayashi
    The crystal structure of a conserved hypothetical protein, TTHA0849 from Thermus thermophilus HB8, has been determined at 2.4,Å resolution as a part of a structural and functional genomics project on T. thermophilus HB8. The main-chain folding shows a compact ,+, motif, forming a hydrophobic cavity in the molecule. A structural similarity search reveals that it resembles those steroidogenic acute regulatory proteins that contain the lipid-transfer (START) domain, even though TTHA0849 shows comparatively weak sequence identity to polyketide cyclases. However, the size of the ligand-binding cavity is distinctly smaller than other START domain-containing proteins, suggesting that it catalyses the transfer of smaller ligand molecules. [source]