Acute Joint Inflammation (acute + joint_inflammation)

Distribution by Scientific Domains


Selected Abstracts


Analgesic and anti-inflammatory actions of robenacoxib in acute joint inflammation in dog

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 2 2010
V. B. SCHMID
Schmid, V. B., Spreng, D. E., Seewald, W., Jung, M., Lees, P., King, J. N. Analgesic and anti-inflammatory actions of robenacoxib in acute joint inflammation in dog. J. vet. Pharmacol. Therap. 33, 118,131. The objectives of this study were to establish dose,response and blood concentration,response relationships for robenacoxib, a novel nonsteroidal anti-inflammatory drug with selectivity for inhibition of the cyclooxygenase (COX)-2 isoenzyme, in a canine model of synovitis. Acute synovitis of the stifle joint was induced by intra-articular injection of sodium urate crystals. Robenacoxib (0.25, 0.5, 1.0, 2.0 and 4.0 mg/kg), placebo and meloxicam (0.2 mg/kg) were administered subcutaneously (s.c.) 3 h after the urate crystals. Pharmacodynamic endpoints included data from forceplate analyses, clinical orthopaedic examinations and time course of inhibition of COX-1 and COX-2 in ex vivo whole blood assays. Blood was collected for pharmacokinetics. Robenacoxib produced dose-related improvement in weight-bearing, pain and swelling as assessed objectively by forceplate analysis (estimated ED50 was 1.23 mg/kg for z peak force) and subjectively by clinical orthopaedic assessments. The analgesic and anti-inflammatory effects of robenacoxib were significantly superior to placebo (0.25,4 mg/kg robenacoxib) and were non-inferior to meloxicam (0.5,4 mg/kg robenacoxib). All dosages of robenacoxib produced significant dose-related inhibition of COX-2 (estimated ED50 was 0.52 mg/kg) but no inhibition of COX-1. At a dosage of 1,2 mg/kg administered s.c., robenacoxib should be at least as effective as 0.2 mg/kg of meloxicam in suppressing acute joint pain and inflammation in dogs. [source]


Near-infrared lymphatic imaging demonstrates the dynamics of lymph flow and lymphangiogenesis during the acute versus chronic phases of arthritis in mice

ARTHRITIS & RHEUMATISM, Issue 7 2010
Quan Zhou
Objective To develop an in vivo imaging method to assess lymphatic draining function in the K/BxN mouse model of inflammatory arthritis. Methods Indocyanine green, a near-infrared fluorescent dye, was injected intradermally into the footpads of wild-type mice, mouse limbs were illuminated with an 806-nm near-infrared laser, and the movement of indocyanine green from the injection site to the draining popliteal lymph node (LN) was recorded with a CCD camera. Indocyanine green near-infrared images were analyzed to obtain 5 measures of lymphatic function across time. Images of K/BxN arthritic mice and control nonarthritic littermates were obtained at 1 month of age, when acute joint inflammation commenced, and again at 3 months of age, when joint inflammation became chronic. Lymphangiogenesis in popliteal LNs was assessed by immunochemistry. Results Indocyanine green and its transport within lymphatic vessels were readily visualized, and quantitative measures were derived. During the acute phase of arthritis, the lymphatic vessels were dilated, with increased indocyanine green signal intensity and lymphatic pulses, and popliteal LNs became fluorescent quickly. During the chronic phase, new lymphatic vessels were present near the foot. However, the appearance of indocyanine green in lymphatic vessels was delayed. The size and area of popliteal LN lymphatic sinuses progressively increased in the K/BxN mice. Conclusion Our findings indicate that indocyanine green near-infrared lymphatic imaging is a valuable method for assessing the lymphatic draining function in mice with inflammatory arthritis. Indocyanine green,near-infrared imaging of K/BxN mice identified 2 distinct lymphatic phenotypes during the acute and chronic phase of inflammation. This technique can be used to assess new therapies for lymphatic disorders. [source]


Triggering of proteinase-activated receptor 4 leads to joint pain and inflammation in mice

ARTHRITIS & RHEUMATISM, Issue 3 2009
Jason J. McDougall
Objective To investigate the role of proteinase-activated receptor 4 (PAR-4) in mediating joint inflammation and pain in mice. Methods Knee joint blood flow, edema, and pain sensitivity (as induced by thermal and mechanical stimuli) were assessed in C57BL/6 mice following intraarticular injection of either the selective PAR-4 agonist AYPGKF-NH2 or the inactive control peptide YAPGKF-NH2. The mechanism of action of AYPGKF-NH2 was examined by pretreatment of each mouse with either the PAR-4 antagonist pepducin P4pal-10 or the bradykinin antagonist HOE 140. Finally, the role of PAR-4 in mediating joint inflammation was tested by pretreating mice with acutely inflamed knees with pepducin P4pal-10. Results PAR-4 activation caused a long-lasting increase in joint blood flow and edema formation, which was not seen following injection of the control peptide. The PAR-4,activating peptide was also found to be pronociceptive in the joint, where it enhanced sensitivity to a noxious thermal stimulus and caused mechanical allodynia and hyperalgesia. The proinflammatory and pronociceptive effects of AYPGKF-NH2 could be inhibited by pepducin P4pal-10 and HOE 140. Finally, pepducin P4pal-10 ameliorated the clinical and physiologic signs of acute joint inflammation. Conclusion This study demonstrates that local activation of PAR-4 leads to proinflammatory changes in the knee joint that are dependent on the kallikrein,kinin system. We also show for the first time that PARs are involved in the modulation of joint pain, with PAR-4 being pronociceptive in this tissue. Thus, blockade of articular PAR-4 may be a useful means of controlling joint inflammation and pain. [source]