Acute Insult (acute + insult)

Distribution by Scientific Domains


Selected Abstracts


Magnetic Resonance Microscopy Defines Ethanol-Induced Brain Abnormalities in Prenatal Mice: Effects of Acute Insult on Gestational Day 7

ALCOHOLISM, Issue 1 2010
Elizabeth A. Godin
Background:, This magnetic resonance microscopy (MRM)-based report is the second in a series designed to illustrate the spectrum of craniofacial and central nervous system (CNS) dysmorphia resulting from single- and multiple-day maternal ethanol treatment. The study described in this report examined the consequences of ethanol exposure on gestational day (GD) 7 in mice, a time in development when gastrulation and neural plate development begins; corresponding to the mid- to late third week postfertilization in humans. Acute GD 7 ethanol exposure in mice has previously been shown to result in CNS defects consistent with holoprosencephaly (HPE) and craniofacial anomalies typical of those in Fetal Alcohol Syndrome (FAS). MRM has facilitated further definition of the range of GD 7 ethanol-induced defects. Methods:, C57Bl/6J female mice were intraperitoneally (i.p.) administered vehicle or 2 injections of 2.9 g/kg ethanol on day 7 of pregnancy. Stage-matched control and ethanol-exposed GD 17 fetuses selected for imaging were immersion fixed in a Bouins/Prohance solution. MRM was conducted at either 7.0 Tesla (T) or 9.4 T. Resulting 29 ,m isotropic spatial resolution scans were segmented and reconstructed to provide 3D images. Linear and volumetric brain measures, as well as morphological features, were compared for control and ethanol-exposed fetuses. Following MRM, selected specimens were processed for routine histology and light microscopic examination. Results:, Gestational day 7 ethanol exposure resulted in a spectrum of median facial and forebrain deficiencies, as expected. This range of abnormalities falls within the HPE spectrum; a spectrum for which facial dysmorphology is consistent with and typically is predictive of that of the forebrain. In addition, other defects including median facial cleft, cleft palate, micrognathia, pituitary agenesis, and third ventricular dilatation were identified. MRM analyses also revealed cerebral cortical dysplasia/heterotopias resulting from this acute, early insult and facilitated a subsequent focused histological investigation of these defects. Conclusions:, Individual MRM scans and 3D reconstructions of fetal mouse brains have facilitated demonstration of a broad range of GD 7 ethanol-induced morphological abnormality. These results, including the discovery of cerebral cortical heterotopias, elucidate the teratogenic potential of ethanol insult during the third week of human prenatal development. [source]


Magnetic Resonance Microscopy Defines Ethanol-Induced Brain Abnormalities in Prenatal Mice: Effects of Acute Insult on Gestational Day 8

ALCOHOLISM, Issue 6 2009
Scott E. Parnell
Background:, Magnetic resonance microscopy (MRM), magnetic resonance imaging (MRI) at microscopic levels, provides unprecedented opportunities to aid in defining the full spectrum of ethanol's insult to the developing brain. This is the first in a series of reports that, collectively, will provide an MRM-based atlas of developmental stage-dependent structural brain abnormalities in a Fetal Alcohol Spectrum Disorders (FASD) mouse model. The ethanol exposure time and developmental stage examined for this report is gestational day (GD) 8 in mice, when the embryos are at early neurulation stages; stages present in humans early in the fourth week postfertilization. Methods:, For this study, pregnant C57Bl/6J mice were administered an ethanol dosage of 2.8 g/kg intraperitoneally at 8 days, 0 hour and again at 8 days, 4 hours postfertilization. On GD 17, fetuses that were selected for MRM analyses were immersion fixed in a Bouin's/Prohance® solution. Control fetuses from vehicle-treated dams were stage-matched to those that were ethanol-exposed. The fetal mice were scanned ex vivo at 7.0 T and 512 × 512 × 1024 image arrays were acquired using 3-D spin warp encoding. The resulting 29 ,m (isotropic) resolution images were processed using ITK-SNAP, a 3-D segmentation/visualization tool. Linear and volume measurements were determined for selected brain, head, and body regions of each specimen. Comparisons were made between control and treated fetuses, with an emphasis on determining (dis)proportionate changes in specific brain regions. Results:, As compared with controls, the crown-rump lengths of stage-matched ethanol-exposed GD 17 fetuses were significantly reduced, as were brain and whole body volumes. Volume reductions were notable in every brain region examined, with the exception of the pituitary and septal region, and were accompanied by increased ventricular volumes. Disproportionate regional brain volume reductions were most marked on the right side and were significant for the olfactory bulb, hippocampus, and cerebellum; the latter being the most severely affected. Additionally, the septal region and the pituitary were disproportionately large. Linear measures were consistent with those of volume. Other dysmorphologic features noted in the MR scans were choanal stenosis and optic nerve coloboma. Conclusions:, This study demonstrates that exposure to ethanol occurring in mice at stages corresponding to the human fourth week postfertilization results in structural brain abnormalities that are readily identifiable at fetal stages of development. In addition to illustrating the utility of MR microscopy for analysis of an FASD mouse model, this work provides new information that confirms and extends human clinical observations. It also provides a framework for comparison of structural brain abnormalities resulting from ethanol exposure at other developmental stages and dosages. [source]


Correlation of a high D-dimer level with poor outcome in traumatic intracranial hemorrhage

EUROPEAN JOURNAL OF NEUROLOGY, Issue 10 2007
J.-R. Kuo
The correlations between D-dimer and Glasgow Coma Scale (GCS), pupillary light reflex, distance of midline shift on brain computed tomography (CT), and Glasgow Outcome Score (GOS) in patients with trauma/non-trauma intracranial hemorrhage (ICH) are not consistent in studies. Ninety-eight traumatic and 59 non-traumatic ICH patients were studied. Pre-existing venous thrombosis, recent surgery, drug use (aspirin or coumadin), or malignancy, were excluded. D-dimer level was estimated within hours after acute insult, and statistical analyses were used for comparisons between groups. Traumatic ICH patients had higher D-dimer levels than controls (2984 vs. 256 ,g/l; P = 0.001). The GCS, midline shift on brain CT, pupillary reflex, and GOS at 3 months were significantly correlated with high D-dimer value in traumatic patients (individual P < 0.001), but not in the non-traumatic group. Using receiver-operating characteristic curve (ROC), the cutoff point was 1496 ,g/l, with sensitivity and specificity of 100% and 83%, respectively. D-dimer ,1496 ,g/l predicted a poor outcome [adjusted odds ratio (OR) 14.44, 95% CI 1.16,179.27; P = 0.038]. A high D-dimer level is associated with a poor outcome in patients with traumatic ICH. It can be used in addition to neurological assessment to predict the outcome. [source]


Glial reactions in Parkinson's disease

MOVEMENT DISORDERS, Issue 4 2008
Patrick L. McGeer MD
Abstract Dopaminergic neurons of the substantia nigra are particularly vulnerable to oxidative and inflammatory attack. Such processes may play a crucial role in the etiology of Parkinson disease (PD). Since glia are the main generators of these processes, the possibility that PD may be caused by glial dysfunction needs to be considered. This review concentrates on glial reactions in PD. Reactive astrocytes and reactive microglia are abundant in the substantia nigra (SN) of PD cases indicating a robust inflammatory state. Glia normally serve neuroprotective roles but, given adverse stimulation, they may contribute to damaging chronic inflammation. Microglia, the phagocytes of brain, may be the main contributors since they can produce large numbers of superoxide anions and other neurotoxins. Their toxicity towards dopaminergic neurons has been demonstrated in tissue culture and various animal models of PD. The MPTP and ,-synuclein models are of particular interest. Years after exposure to MPTP, inflammation has been observed in the SN. This has established that an acute insult to the SN can result in a sustained local inflammation. The ,-synuclein model indicates that an endogenous protein can induce inflammation, and, when overexpressed, can lead to autosomal dominant PD. Less is known about the role of astrocytes than microglia, but they are known to secrete both inflammatory and anti-inflammatory molecules and may play a role in modulating microglial activity. Oligodendrocytes do not seem to play a role in promoting inflammation although, like neurons, they may be damaged by inflammatory processes. Further research concerning glial reactions in PD may lead to disease-modifying therapeutic approaches. © 2007 Movement Disorder Society [source]


Neuroprotective role of bradykinin because of the attenuation of pro-inflammatory cytokine release from activated microglia

JOURNAL OF NEUROCHEMISTRY, Issue 2 2007
Mami Noda
Abstract Bradykinin (BK) has been reported to be a mediator of brain damage in acute insults. Receptors for BK have been identified on microglia, the pathologic sensors of the brain. Here, we report that BK attenuated lipopolysaccharide (LPS)-induced release of tumor necrosis factor-alpha (TNF-,) and interleukin-1, from microglial cells, thus acting as an anti-inflammatory mediator in the brain. This effect was mimicked by raising intracellular cAMP or stimulating the prostanoid receptors EP2 and EP4, while it was abolished by a cAMP antagonist, a prostanoid receptor antagonist, or by an inhibitor of the inducible cyclooxygenase (cyclooxygenase-2). BK also enhanced formation of prostaglandin E2 and expression of microsomal prostaglandin E synthase. Expression of BK receptors and EP2/EP4 receptors were also enhanced. Using physiological techniques, we identified functional BK receptors not only in culture, but also in microglia from acute brain slices. BK reduced LPS-induced neuronal death in neuron,microglia co-cultures. This was probably mediated via microglia as it did not affect TNF-,-induced neuronal death in pure neuronal cultures. Our data imply that BK has anti-inflammatory and neuroprotective effects in the central nervous system by modulating microglial function. [source]