ACTH Concentrations (acth + concentration)

Distribution by Scientific Domains

Kinds of ACTH Concentrations

  • plasma acth concentration


  • Selected Abstracts


    Blunted Pituitary-Adrenocortical Stress Response in Adult Rats Following Neonatal Dexamethasone Treatment

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 10 2000
    K. Felszeghy
    Abstract Glucocorticoids have a prominent impact on the maturation of the stress-related neuroendocrine system and on the postnatal establishment of adaptive behaviour. The present study aimed at investigating the stress responsiveness of the hypothalamo-pituitary-adrenocortical (HPA) axis in young and adult rats after neonatal treatment with the synthetic glucocorticoid agonist, dexamethasone. Newborn male Wistar rats were injected s.c. with 1 µg/g dexamethasone on postnatal days 1, 3 and 5. Circulating adrenocorticotropic hormone (ACTH) and corticosterone concentrations were measured in the resting state and following a 30-min cold stress at the age of 10 days, as well as after a 30-min restraint stress at the age of 14 weeks. Also in adults, pituitary and adrenocortical hormone responsiveness was evaluated after i.v. administration of 2 µg/kg corticotropin releasing hormone (CRH). In addition, glucocorticoid (GR) and mineralocorticoid receptor (MR) binding capacities were assessed in the pituitaries of adult rats. The results showed that at day 10 basal ACTH concentration was elevated while the cold stress-evoked ACTH response was attenuated in the dexamethasone-treated rats. As adults, treated rats showed a suppressed elevation of both ACTH and corticosterone plasma cncentrations in response to restraint, while basal hormonal concentrations were not altered. There was no difference in the magnitude of the CRH-induced elevation of ACTH and corticosterone concentrations initially; however, the dexamethasone-treated animals showed a prolonged secretion of both hormones. These animals also showed a selective decrease in pituitary GR binding capacity. Neonatal dexamethasone treatment strongly suppressed body weight gain, and adrenal and thymus weights in the early phase of postnatal development. By adulthood, the body and adrenal weights were normalized while thymus weight was greater than in controls. These findings indicate that neonatal dexamethasone treatment permanently alters HPA axis activity by reducing stress responses to cold and restraint probably through supra-pituitary actions, and by decreasing the effectiveness of feedback through a diminished GR binding in the pituitary. [source]


    Use of endogenous ACTH concentration and adrenal ultrasonography to distinguish the cause of canine hyperadrenocorticism

    JOURNAL OF SMALL ANIMAL PRACTICE, Issue 3 2001
    S. M. Gould
    Twenty-nine dogs were diagnosed with hyperadrenocorticism (HAC). A single determination of endogenous plasma adrenocorticotropic hormone (ACTH) and adrenal ultrasonography were used in a prospective study to differentiate between pituitary-dependent HAC (PDH) and adrenal-dependent HAC (ADH). In 27 out of the 29 dogs (93 per cent), both endogenous plasma ACTH concentrations and adrenal ultrasonography indicated the same cause of HAC. Twenty-one of the 29 cases (72 per cent) were shown to be pituitary-dependent; all had plasma ACTH concentrations of greater than 28 pg/ml (reference range 13 to 46 pg/ml) and both adrenal glands were ultrasonographically of similar size and of normal shape. All 21 cases responded well to mitotane therapy. Six cases (21 per cent) were shown to be adrenal-dependent; all had plasma ACTH concentrations below the limit of the assay (<5 pg/ml) and the presence of an adrenal mass on ultrasonography. The sensitivity and specificity of adrenal ultrasonography and endogenous ACTH determinations to identify the cause of HAC were demonstrated to be 100 per cent and 95 per cent, respectively, for ADH. These discriminatory tests are more accurate than published figures for dexamethasone suppression testing. [source]


    Seasonal Variation in Serum Concentrations of Selected Metabolic Hormones in Horses

    JOURNAL OF VETERINARY INTERNAL MEDICINE, Issue 3 2010
    N.J. Place
    Background: Determination of adrenocorticotropic hormone (ACTH) concentration is a commonly used test in the evaluation of endocrine causes of equine laminitis, but the concentration in healthy horses can be high at certain times of year, which alters the specificity of the ACTH test. Objective: To determine if circulating concentrations of ACTH, cortisol, glucose, insulin, and thyroxine vary month to month in healthy horses and in horses with equine metabolic syndrome (EMS). Animals: Nine healthy adult horses were studied on their farm/stable over the course of 1 year. After the diagnosis of EMS, 10 laminitic horses residing at the same farm/stable were also studied. Methods: Prospective study of healthy and laminitic horses. Plasma/serum samples were analyzed for concentrations of hormones and glucose. Results: ACTH was the only analyte to show a discrete seasonal pattern, with concentrations in healthy and EMS horses frequently outside of the reference range (9,35 pg/mL) in August through October. Insulin was elevated (>40 ,IU/mL) in EMS horses during most months and median serum glucose was generally higher in EMS horses (100 mg/dL, range, 76,163 mg/ dL) than in controls (94 mg/dL, range, 56,110 mg/dL), but no seasonal patterns for insulin or glucose were found. Conclusions and Clinical Importance: An increased ACTH concentration in horses in late summer or autumn should be interpreted with caution. In contrast, insulin concentration is maintained within the reference range throughout the year in healthy horses, thus an increased insulin concentration at any time of year should raise suspicions of EMS, ECD, or both. [source]


    Hypothalamic-Pituitary-Adrenal Axis Abnormalities in Response to Deletion of 11,-HSD1 is Strain-Dependent

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 11 2009
    R. N. Carter
    Inter-individual differences in hypothalamic-pituitary-adrenal (HPA) axis activity underlie differential vulnerability to neuropsychiatric and metabolic disorders, although the basis of this variation is poorly understood. 11,-Hydroxysteroid dehydrogenase type 1 (11,-HSD1) has previously been shown to influence HPA axis activity. 129/MF1 mice null for 11,-HSD1 (129/MF1 HSD1,/,) have greatly increased adrenal gland size and altered HPA activity, consistent with reduced glucocorticoid negative feedback. On this background, concentrations of plasma corticosterone and adrenocorticotrophic hormone (ACTH) were elevated in unstressed mice, and showed a delayed return to baseline after stress in HSD1-null mice with reduced sensitivity to exogenous glucocorticoid feedback compared to same-background genetic controls. In the present study, we report that the genetic background can dramatically alter this pattern. By contrast to HSD1,/, mice on a 129/MF1 background, HSD1,/, mice congenic on a C57Bl/6J background have normal basal plasma corticosterone and ACTH concentrations and exhibit normal return to baseline of plasma corticosterone and ACTH concentrations after stress. Furthermore, in contrast to 129/MF1 HSD1,/, mice, C57Bl/6J HSD1,/, mice have increased glucocorticoid receptor expression in areas of the brain involved in glucocorticoid negative feedback (hippocampus and paraventricular nucleus), suggesting this may be a compensatory response to normalise feedback control of the HPA axis. In support of this hypothesis, C57Bl/6J HSD1,/, mice show increased sensitivity to dexamethasone-mediated suppression of peak corticosterone. Thus, although 11,-HSD1 appears to contribute to regulation of the HPA axis, the genetic background is crucial in governing the response to (and hence the consequences of) its loss. Similar variations in plasticity may underpin inter-individual differences in vulnerability to disorders associated with HPA axis dysregulation. They also indicate that 11,-HSD1 inhibition does not inevitably activate the HPA axis. [source]


    ,1 Adrenoreceptors Mediate The Stimulatory Effects of Oestrogen On Stress-Related Hypothalamic-Pituitary-Adrenal Activity in The Female Rat

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 1 2004
    V. Viau
    Abstract Variation in challenge-induced adrenocorticotropin hormone (ACTH) release over the oestrous cycle occurs in response to fluctuations in circulating concentrations of oestrogen and progesterone. However, how these ovarian steroids interact to regulate the principal ACTH cosecretagogues, corticotropin-releasing hormone (CRH) and arginine vasopressin is not understood. Here, we measured median eminence CRH and vasopressin content in intact cycling female rats, and in ovariectomized (OVX) females steroid-replaced in a manner that approximates the relative release patterns of oestrogen and progesterone seen over the oestrous cycle. Intact cycling females showed significantly higher median eminence CRH and vasopressin concentrations during proestrous and oestrous compared to the diestrous phase. In OVX rats, a single 10 µg injection of oestrogen failed to mimic this increase in median eminence CRH and vasopressin. However, this dose significantly elevated CRH and vasopressin content in OVX rats previously exposed to diestrous concentrations of oestrogen and progesterone. Moreover, oestrogen priming enhanced restraint-induced depletion of CRH and vasopressin from the median eminence, but only against a background of low oestrogen and progesterone replacement. Oestrogen-induced elevations in median eminence vasopressin (but not CRH) content were reduced by peripheral administration of the ,1 adrenoreceptor antagonist prazosin. Finally, plasma ACTH concentrations following central injection of the ,1 receptor agonist, phenylephrine, were significantly higher in rats during proestrous compared to diestrous. These results indicate that the stimulatory effect of oestrogen on both the expression and stress-induced release of ACTH cosecretagogues is exerted only against a background of low oestrogen and progesterone levels, and is mediated, in part, via the ,1 adrenoreceptor. [source]


    Differential and Age-Dependent Effects of Maternal Deprivation on the Hypothalamic-Pituitary-Adrenal Axis of Brown Norway Rats from Youth to Senescence

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2001
    J. O. Workel
    Abstract In this study, the hypothesis was tested that infants deprived from maternal care show persistent changes in hypothalamic-pituitary-adrenal activity. For this purpose, we studied the effect of maternal deprivation in one cohort of the healthy ageing Brown Norway rat strain showing still more than 80% survival rate at 32 months of age. Three-day-old male Brown Norway rats were either maternally deprived for 24 h or remained with the dam. In 3, 12 and 30,32 months (young, adult, senescent) deprived rats and their nondeprived littermates (controls), we determined basal resting and stress-induced plasma adrenocorticotropic hormone (ACTH) and corticosterone as well as corticotropin releasing hormone (CRH) mRNA expression in the paraventricular nucleus (PVN) of the hypothalamus. Mineralocorticoid (MR) and glucocorticoid receptors (GR) in hippocampus and PVN were also assessed using in vitro cytosol binding and in situ hybridization. The effect of ageing per se showed that in the control nondeprived Brown Norway rats, basal corticosterone and ACTH concentrations did not change during life. However, with age, the corticosterone response to novelty stress became progressively attenuated, but prolonged, while there was an age-related increase in the ACTH response. CRH mRNA expression in PVN decreased with age. Hippocampal MR binding and MR mRNA expression in the dentate gyrus were reduced at senescence, as were the GR binding capacities in hippocampus and hypothalamus. Maternal deprivation did not affect survival rate, body weight, nor adrenal weight of the ageing Brown Norway rats. Basal corticosterone and ACTH levels were not affected by deprivation, except for a rise in basal corticosterone concentrations at 3 months. At this age, the corticosterone output in response to novelty was attenuated in the deprived rats. In contrast, a striking surge in novelty stress-induced corticosterone output occurred at midlife while, at senescence, the corticosterone and ACTH responses were attenuated again in the deprived animals, particularly after the more severe restraint stressor. CRH mRNA expression was reduced only during adulthood in the deprived animals. After maternal deprivation, the MR mRNA in dentate gyrus showed a transient midlife rise. GR binding in hypothalamus and hippocampus GR binding was reduced in young rats while, in the senescent deprived animals, a reduced GRmRNA expression was observed in PVN and hippocampal CA1. In conclusion, in the Brown Norway rat, ageing causes a progressive decline in corticosterone output after stress, which is paralleled at senescence by decreased MR and GR mRNA expression in hippocampus and hypothalamus. The long-term effects of maternal deprivation become manifest differently at different ages and depend on test conditions. The deprivation effect culminates in a midlife corticosterone surge and results at senescence in a strongly reduced corticosterone output. [source]


    Differential Effects of Placental Restriction on IGF-II, ACTH Receptor and Steroidogenic Enzyme mRNA Levels in the Foetal Sheep Adrenal

    JOURNAL OF NEUROENDOCRINOLOGY, Issue 1 2000
    Ross
    We have investigated the effects of restriction of placental growth on foetal adrenal growth and adrenal expression of mRNAs for Insulin-like Growth Factor II (IGF-II), the IGF binding protein IGFBP-2, Steroidogenic Factor 1 (SF-1) and adrenocorticotrophic hormone (ACTH) receptor (ACTH-R) and the steroidogenic cytochrome P-450 enzymes: cholesterol side chain cleavage (CYP11A1), 17, -hydroxylase (CYP17) and 21-hydroxylase (CYP21A1); and 3, -hydroxysteroid dehydrogenase/,5,4 isomerase (3,HSD). Endometrial caruncles were removed from non-pregnant ewes before mating (placental restriction group; PR). The total adrenal: foetal weight ratio was higher in PR (n=6 foetuses) than in control foetuses (n=6 foetuses). There was no difference in plasma ACTH concentrations between the PR and control foetuses between 130 and 140 days gestation. Adrenal IGF-II mRNA levels were lower (P<0.05) in the PR group, however, adrenal IGFBP-2 mRNA levels were not different between the PR and control groups. Adrenal ACTH-R mRNA levels were also lower whilst CYP11A1 mRNA levels were increased (P<0.005) in the PR group. We conclude that foetal adrenal growth and steroidogenesis are stimulated as a consequence of foetal growth restriction and that factors other than ACTH are important in foetal adrenal activation during chronic, sustained hypoxaemia. [source]


    Use of endogenous ACTH concentration and adrenal ultrasonography to distinguish the cause of canine hyperadrenocorticism

    JOURNAL OF SMALL ANIMAL PRACTICE, Issue 3 2001
    S. M. Gould
    Twenty-nine dogs were diagnosed with hyperadrenocorticism (HAC). A single determination of endogenous plasma adrenocorticotropic hormone (ACTH) and adrenal ultrasonography were used in a prospective study to differentiate between pituitary-dependent HAC (PDH) and adrenal-dependent HAC (ADH). In 27 out of the 29 dogs (93 per cent), both endogenous plasma ACTH concentrations and adrenal ultrasonography indicated the same cause of HAC. Twenty-one of the 29 cases (72 per cent) were shown to be pituitary-dependent; all had plasma ACTH concentrations of greater than 28 pg/ml (reference range 13 to 46 pg/ml) and both adrenal glands were ultrasonographically of similar size and of normal shape. All 21 cases responded well to mitotane therapy. Six cases (21 per cent) were shown to be adrenal-dependent; all had plasma ACTH concentrations below the limit of the assay (<5 pg/ml) and the presence of an adrenal mass on ultrasonography. The sensitivity and specificity of adrenal ultrasonography and endogenous ACTH determinations to identify the cause of HAC were demonstrated to be 100 per cent and 95 per cent, respectively, for ADH. These discriminatory tests are more accurate than published figures for dexamethasone suppression testing. [source]


    Association of Season and Pasture Grazing with Blood Hormone and Metabolite Concentrations in Horses with Presumed Pituitary Pars Intermedia Dysfunction

    JOURNAL OF VETERINARY INTERNAL MEDICINE, Issue 5 2010
    N. Frank
    Background: Pituitary pars intermedia dysfunction (PPID) is a risk factor for pasture-associated laminitis, which follows a seasonal pattern. Hypothesis: Hormonal responses to season differ between PPID and unaffected horses. Animals: Seventeen horses aged 8,30 years (14 horses , 20 years of age). Methods: Longitudinal observational study. Blood was collected monthly from August 2007 until July 2008 after pasture grazing and again after overnight stall confinement. Blood hormone and metabolite concentrations were measured and pasture grass samples were analyzed to determine carbohydrate content. Analysis of variance analysis for repeated measures was performed. Results: Mean ACTH concentrations varied significantly over time (P < .001), with higher concentrations detected in August, September, and October compared with November,April. Pasture × time effects were detected for glucose and insulin concentrations, with peaks observed in September. Horses were retrospectively allocated to PPID (n = 8) and control (n = 9) groups on the basis of plasma ACTH concentrations. Changes in insulin concentrations over time differed in the PPID group when compared with the control group. Insulin concentrations were positively correlated with grass carbohydrate composition. Conclusions and Clinical Importance: PPID did not affect the timing or duration of the seasonal increase in ACTH concentrations, but higher values were detected in affected horses. Insulin concentrations differed between groups, but hyperinsulinemia was rarely detected. Glucose and insulin concentrations peaked in September when horses were grazing on pasture, which could be relevant to the seasonal pattern of laminitis. [source]