| |||
Acrosome
Kinds of Acrosome Terms modified by Acrosome Selected AbstractsRnf19a, a ubiquitin protein ligase, and Psmc3, a component of the 26S proteasome, Tether to the acrosome membranes and the head,tail coupling apparatus during rat spermatid developmentDEVELOPMENTAL DYNAMICS, Issue 7 2009Eugene Rivkin Abstract We report the cDNA cloning of rat testis Rnf19a, a ubiquitin protein ligase, and show 98% and 93% protein sequence identity of testicular mouse and human Rnf19a, respectively. Rnf19a interacts with Psmc3, a protein component of the 19S regulatory cap of the 26S proteasome. During spermatid development, Rnf19a and Psmc3 are initially found in Golgi-derived proacrosomal vesicles. Later on, Rnf19a, Psmc3, and ubiquitin are seen along the cytosolic side of the acrosomal membranes and the acroplaxome, a cytoskeletal plate linking the acrosome to the spermatid nuclear envelope. Rnf19a and Psmc3 accumulate at the acroplaxome marginal ring,manchette perinuclear ring region during spermatid head shaping and in the developing sperm head,tail coupling apparatus and tail. Rnf19a and Psmc3 may interact directly or indirectly with each other, presumably pointing to the participation of the ubiquitin,proteasome system in acrosome biogenesis, spermatid head shaping, and development of the head-tail coupling apparatus and tail. Developmental Dynamics 238:1851,1861, 2009. © 2009 Wiley-Liss, Inc. [source] Spermatogenesis in Boccardiella hamata (Polychaeta: Spionidae) from the Sea of Japan: sperm formation mechanisms as characteristics for future taxonomic revisionACTA ZOOLOGICA, Issue 4 2010Arkadiy A. Reunov Abstract Reunov, A.A., Yurchenko, O.V., Alexandrova, Y.N. and Radashevsky, V.I. 2009. Spermatogenesis in Boccardiella hamata (Polychaeta: Spionidae) from the Sea of Japan: sperm formation mechanisms as characteristics for future taxonomic revision. ,Acta Zoologica (Stockholm) 91: 477,456. To characterize novel features that will be useful in the discussion and validation of the spionid polychaete Boccardiella hamata from the Sea of Japan, the successive stages of spermatogenesis were described and illustrated. Spermatogonia, spermatocytes and early spermatids are aflagellar cells that develop synchronously in clusters united by a cytophore. At the middle spermatid stage, the clusters undergo disintegration and spermatids produce flagella and float separately in coelomic fluid as they transform into sperm. Spermatozoa are filiform. The ring-shaped storage platelets are located along the anterior nuclear area. The nucleus is cupped by a conical acrosome. A nuclear plate is present between the acrosome and nucleus. The nucleus is a cylinder with the implantation fossa throughout its length and with the anterior part of the flagellum inside the fossa. There is only one centriole, serving as a basal body of the flagellum, situated in close vicinity of the acrosomal area. A collar of four mitochondria is located under the nuclear base. The ultrastructure of B. hamata spermatozoa from the Sea of Japan appears to be close to that of B. hamata from Florida described by Rice (Microscopic Anatomy of Invertebrates, Wiley-Liss, Inc., New York, 1992), suggesting species identity of the samples from the two regions. However, more detailed study of Florida's B. hamata sperm is required for a reliable conclusion concerning the similarity of these two polychaetes. In addition to sperm structure, features such as the cytophore-assigned pattern of spermatogenic cell development, the synchronous pattern of cell divisions, the non-flagellate early spermatogenic stages, and the vesicle amalgamation that drives meiotic cell cytokinesis and spermatid diorthosis will likely be useful in future testing of the validity of B. hamata and sibling species throughout the world. [source] Structural and ultrastructural studies of male reproductive tract and spermatozoa in Xylocopa frontalis (Hymenoptera, Apidae)ACTA ZOOLOGICA, Issue 2 2010B. S. Fiorillo Abstract Fiorillo, B. S., Zama, U., Lino-Neto, J. and Báo, S. N. 2010. Structural and ultrastructural studies of male reproductive tract and spermatozoa in Xylocopa frontalis (Hymenoptera, Apidae). ,Acta Zoologica (Stockholm) 91: 176,183. In Xylocopa frontalis the reproductive tract is composed of testes, deferent ducts, seminal vesicles, accessory glands and an ejaculatory duct. Each testis comprises four testicular tubules in which multiple cysts are present containing approximately 64 spermatozoa per cyst. The seminal vesicle consists of an epithelium, a thick basement lamina and a muscular external sheet. In the luminal region some vesicles can be observed; however, the epithelial cells of the seminal vesicle do not display morphological features associated with secretory functions. The spermatozoa, measuring approximately 260 µm long, are similar to the hymenopteran pattern. The head region consists of an acrosome with an inner perforatorium that penetrates an asymmetrical nuclear tip. The nucleus is linear, electron-dense and its posterior tip projects into the beginning of the axoneme. The centriolar adjunct is asymmetric with many electron-lucent lacunae interspersed throughout. The axoneme has the 9 + 9 + 2 pattern of microtubules and in the posterior region the central microtubules finish first, followed by the doublets and finally the accessory microtubules. The mitochondrial derivatives are asymmetric in both length and diameter with paracrystalline material present only in the larger one. These features may be useful characters for taxonomy and phylogenetic studies. [source] Fine structure of spermatozoa of Chondrostoma nasus and Rutilus meidingerii (Teleostei, Cyprinidae), as revealed by scanning and transmission electron microscopyACTA ZOOLOGICA, Issue 1 2010Sonja Fürböck Abstract Fürböck, S., Patzner, R.A. and Lahnsteiner, F. 2008. Fine structure of spermatozoa of Chondrostoma nasus and Rutilus meidingerii (Teleostei, Cyprinidae), as revealed by scanning and transmission electron microscopy. , Acta Zoologica (Stockholm) 91: 88,95 The fine structure of spermatozoa of sneep or nase, Chondrostoma nasus, and lake chub, Rutilus meidingerii, was investigated by means of scanning and transmission electron microscopy. The uniflagellate spermatozoa of C. nasus lacked an acrosome. The flagellum contained the conventional nine peripheral doublets and one central pair of microtubules (9 + 2 pattern) and lacked lateral fins. The uniflagellate spermatozoa of R. meidingerii were made up of a head, also without an acrosome. For both species the sperm tail was covered by a plasma membrane. The midpiece of C. nasus contained five or six mitochondria on average, vesicles and glycogen granules, whereas the midpiece of R. meidingerii had seven mitochondria of a spherical or ovoid shape. The centriolar complex was located caudolaterally with respect to the nucleus. In C. nasus, the centrioles were orientated at an angle of 125° to each other, whereas the centrioles of R. meidingerii were at an angle of 110°. The fine structure of C. nasus and R. meidingerii spermatozoa showed species-specific differences in the position of the proximal centriole relative to the distal centriole, the position and number of mitochondria, size of the head and the length of the flagellum. (Correction added on 11 June 2009, after first online publication: The word ,axoneme' was deleted from the sentence ,The flagellum contained the conventional nine peripheral doublets and one central pair of microtubules (9 + 2 pattern) axoneme and lacked lateral fins.') [source] Ultrastructure of spermatozoa of lizards in the genus Mabuya from Central BrazilACTA ZOOLOGICA, Issue 1 2009S. M. De Sá Mandel Abstract This is the first description of spermatozoal ultrastructure of Mabuya skinks. The spermatozoa of the species studied are filiform, consisting of a head region, a midpiece and a tail. The head is characterized by the following features: a depressed acrosome anteriorly, an acrosome vesicle divided into cortex and medulla, paracrystalline subacrosomal material, a pointed tip perforatorium, a circular perforatorium base plate inside the subacrosomal cone, an epinuclear lucent zone separated from the subacrosomal cone by a membrane, a large nuclear rostrum, and round nuclear shoulders. The midpiece presents a bilateral stratified laminar structure, a distal centriole, peripheral fibres 3 and 8 grossly enlarged, columnar mitochondria with linear cristae, dense body rings and a triangular annulus. Finally, the tail is composed of a principal piece and an end piece. An axoneme and a fibrous sheath characterize the principal piece, and the end piece is formed only by an axoneme, which loses its pattern in the last portion. Comparisons with members of Teiidae revealed differences in the numbers of dense rings. A well-developed epinuclear lucent zone in Mabuya is less prominent among teiids. In the spermatozoa of Mabuya, the first ring of dense bodies is very large, uniquely resembling the condition present in snakes. [source] Ultrastructure of the spermatozoon of Apus apus (Linnaeus 1758), the common swift (Aves; Apodiformes; Apodidae), with phylogenetic implicationsACTA ZOOLOGICA, Issue 4 2005Barrie G. M. Jamieson Abstract The spermatozoon of Apus apus is typical of non-passerines in many respects. Features shared with palaeognaths and the Galloanserae are the conical acrosome, shorter than the nucleus; the presence of a proximal as well as distal centriole; the elongate midpiece with mitochondria grouped around an elongate distal centriole; and the presence of a fibrous or amorphous sheath around the principal piece of the axoneme. The perforatorium and endonuclear canal are lost in A. apus as in some other non-passerines. All non-passerines differ from palaeognaths in that the latter have a transversely ribbed fibrous sheath whereas in non-passerines it is amorphous, as in Apus, or absent. The absence of an annulus is an apomorphic but homoplastic feature of swift, psittaciform, gruiform and passerine spermatozoa. The long distal centriole, penetrating the entire midpiece, is a remarkably plesiomorphic feature of the swift spermatozoa, known elsewhere only in palaeognaths. The long centriole of Apus, if not a reversal, would be inconsistent with the former placement of the Apodiformes above the Psittaciformes from DNA,DNA hybridization. In contrast to passerines, in A. apus the microtubules in the spermatid are restricted to a transient single row encircling the cell. The form of the spermatozoon fully justifies the exclusion of swifts from the passerine family Hirundinidae. [source] A dendrobranchiate, Peisos petrunkevitchi (Decapoda, Sergestidae), with reptant-like sperm: a spermiocladistic assessmentACTA ZOOLOGICA, Issue 2 2004Marcelo A. Scelzo Abstract The spermatozoon of Peisos petrunkevitchi differs significantly from those of any of the investigated dendrobranchiates in the anterior fusiform acrosome, lacking a spike, and embedded in (instead of capping) the nuclear region. In contrast, the position of the acrosome and the internal arrangement of its contents, as well as the apomorphic presence of a pair of centrioles (absent in all known dendrobranchiate spermatozoa) at the base of the acrosomal perforatorium, indicate a close affinity between this sperm plan and that found in reptants, especially anomurans and brachyurans. Based on the present and previous observations on decapod spermatozoal ultrastructure, we review the phylogeny of dendrobranchiate spermatozoa in the perspective of most recent phylogenetic analyses of malacostracan crustaceans. [source] Polymorphism in the sperm ultrastructure among four species of lizards in the genus Tupinambis (Squamata: Teiidae)ACTA ZOOLOGICA, Issue 4 2002L. Tavares-Bastos Abstract We describe, for the first time, the ultrastructure of the spermatozoa of four species of the genus Tupinambis (Squamata, Teiidae). We identified seven polymorphic characters within this genus: the presence and shape of the perforatorial base plate, the presence of the epinuclear lucent zone, the presence of a unilateral ridge in the acrosome, the presence of a central density within the proximal centriole, the number of mitochondria and dense-bodies sets, and the shape of mitochondria. We analysed the evolution of the seven polymorphic characters by mapping them onto a current phylogeny of the species of Tupinambis, using the teiids Ameiva ameiva and Cnemidophorus sexlineatus as outgroups. Our results indicate that sperm ultrastucture characters, although of great value for phylogeny at higher taxonomic levels in reptiles and other groups, are poor predictors of phylogeny when considering the species of Tupinambis studied here. We failed to identify evidences that homoplasy in sperm ultrastructure among the species of Tupinambis is due to convergent adaptation, suggesting that the polymorphism may be selectively neutral in this group. [source] Ultrastructure of the seminal receptacle and the dimorphic sperm in the commensal bivalve Mysella bidentata (Veneroida; Galeommatoidea; Montacutidae)ACTA ZOOLOGICA, Issue 2 2001Åse Jespersen Abstract Jespersen, Å. and Lützen, J. 2001. Ultrastructure of the seminal receptacle and the dimorphic sperm in the commensal bivalve Mysella bidentata (Veneroida: Galeommatoidea: Montacutidae). ,Acta Zoologica (Stockholm) 82: 107,115 The seminal receptacle and the euspermatozoa and paraspermatozoa of Mysella bidentata were examined at an ultrastructural level and the results were compared with earlier findings of the same and other species of the Montacutidae. The euspermatozoon has a slender 13 µm long nucleus and a 1.1 µm long bullet-shaped acrosome. The acrosome of the paraspermatozoon is almost identical in ultrastructure to that of the euspermatozoa but is longer (1.9 µm) and more slender and is bent at an angle to the diminutive nucleus (1.1 µm long). The unpaired seminal receptacle is lined by a heavily ciliated epithelium and a non-ciliated epithelium with short and broad microvilli. Euspermatozoa only are stored in the receptacle. They are densely packed and orientated with their heads towards the non-ciliated epithelium. In this position they develop numerous extremely fine microvilli from the acrosome which apparently serve to attach them to the epithelial microvillar surface. Stored sperm may presumably remain functional for at least six months. A possible function of paraspermatozoa could be to clump sperm into sperm bags to keep them in suspension. [source] Structure and ultrastructure of the spermatozoa of Trichogramma pretiosum Riley and Trichogramma atopovirilia Oatman and Platner (Hymenoptera: Trichogrammatidae)ACTA ZOOLOGICA, Issue 3 2000José Lino-Neto Abstract Lino-Neto, J., Báo, S. N. and Dolder, H. 2000. Structure and Ultrastructure of the Spermatozoa of Trichogramma pretiosum Riley and Trichogramma atopovirilia Oatman and Platner (Hymenoptera: Trichogrammatidae). ,Acta Zoologica (Stockholm) 81: 205,211 Spermatozoa of the Trichogramma pretiosum and T. atopovirilia are very slender and long, about 0.35 µm in diameter and 283 µm and 106 µm in length, respectively. Under light microscopy, they appear wavy along their entire length. The head contains a small acrosome which, together with the initial nuclear region is surrounded by an ,extracellular sheath', from which innumerable filaments irradiate. The nucleus is filled with homogeneous, compact chromatin and is attached to the flagellum by an electron dense centriolar adjunct, which extends anteriorly from the nuclear base. The flagellum consists of an axoneme with the 9 + 9 + 2 microtubule arrangement pitched in a long helix, as well as a pair of spiralling mitochondrial derivatives which coil around the axoneme. Based on these characteristics, the sperm of these Trichogramma are very similar to the chalcidoids studied to date and differ from non-chalcidoid Hymenoptera. They differ widely from the sperm of T. dendrolimi and T. ostriniae studied, where no helically twisted structure is shown. However, based on these results we argue that the spiralling of the flagellar structures is a synapomorphy for Trichogrammatidae as well as for Eulophidae + Eurytomidae + Pteromalidae. [source] Characterization of human sperm N -acetylglucosaminidaseINTERNATIONAL JOURNAL OF ANDROLOGY, Issue 3 2008S. L. Perez Martinez Summary N -acetylglucosaminidase (NAG) is particularly active in mammalian spermatozoa and appears to be involved in fertilization. Although it is assumed that this enzyme is acrosomal, previous results from our laboratory suggest the presence of NAG at the sperm plasma membrane level. The present study attempted to analyse the subcellular distribution of this enzyme in human spermatozoa. Sperm were incubated under different conditions and NAG activity measured in the soluble extracts and cell pellets using a specific fluorometric substrate. A significant proportion of NAG activity was released when sperm were incubated in culture medium, suggesting a weak association with the plasma membrane. This location was confirmed by western blot analysis of plasma membrane fractions and immunofluorescence on non-permeabilized sperm, which showed a positive signal mainly on the acrosomal domain. The distribution of NAG activity between plasma membrane and acrosome was analysed after cell disruption by freezing and thawing. Triton X-100 stimulated sperm and epididymal NAG activity but not the enzyme obtained from other sources. In addition, biotinylated human recombinant NAG was able to bind to human sperm. Finally, after sperm incubation under capacitating conditions, NAG total activity increased and the sperm enzyme lost its ability to be stimulated by Triton X-100. The possible connection of these results with sperm maturation, capacitation and NAG participation in primary binding to the zona pellucida, was discussed. [source] Enzymatic and immunochemical evaluation of phospholipid hydroperoxide glutathione peroxidase (PHGPx) in testes and epididymal spermatozoa of rats of different agesINTERNATIONAL JOURNAL OF ANDROLOGY, Issue 2 2002Federica Tramer Selenium (Se) and selenoproteins such as glutathione peroxidases are necessary for the proper development and fertilizing capacity of sperm cells. Phospholipid hydroperoxide glutathione peroxidase (PHGPx, E.C. 1.11.1.12) is a monomeric seleno-enzyme present in different mammalian tissues in soluble and bound form. Its function, like the other glutathione peroxidases, was originally viewed as a protective role against hydroperoxides, but direct and indirect evidence indicates that it has additional regulatory roles. PHGPx is present in testis cells and sperm cells, and its appearance is hormone regulated. We present here biochemical data, which clearly indicate that the enzyme specific activity in rat is age-dependent during the life-span monitored (from 36 to 365 days), with a maximum at 3 months of age in the testis germ cells and at 6 months of age in the isolated epididymal sperm cells. Western blotting and immunocytochemical analysis by means of anti-PHGPx antibodies show the different distribution and the strong binding of PHGPx in the testes and sperm cell subcellular compartments (nucleus, acrosome, mitochondria and residual bodies) of rats of different age. The presence of the protein exhibits in the testis cells a pattern different from that of the catalytic activity, with a maximum at 6 months of age. The subcellular distribution of PHGPx is qualitatively, but not quantitatively, unchanged during ageing. These different behaviours are compared and discussed. [source] Living without mitochondria: spermatozoa and spermatogenesis in two species of Urodasys (Gastrotricha, Macrodasyida) from dysoxic sedimentsINVERTEBRATE BIOLOGY, Issue 1 2007Maria Balsamo Abstract. The spermatozoa of two species of Macrodasyida (Gastrotricha), Urodasys anorektoxys and U. acanthostylis, show an ultrastructural organization diverging from one another and from other gastrotrichs: their main peculiarity is in the absence of mitochondria. In U. anorektoxys, the acrosome is a long, twisted column inserted into the nucleus, which is basally cylindrical, and the flagellum shows rows of peculiar, large globules parallel to the axonemal doublets. In U. acanthostylis, the acrosome is completely cork-screwed and surrounds the nucleus, and the tail shows columnar accessory fibers. At present, the absence of mitochondria in the mature sperm, and the peculiar fingerprint aspect of condensed chromatin are the only traits shared by the two species. The features of the spermatozoa of these two species of Urodasys widen the range of different models of gastrotrich spermatozoa, and place the genus in a peculiar position, from the spermatological point of view, within the Macrodasyida. The loss of mitochondria in mature spermatozoa is possibly related to either the dysoxic habitat of the two species or a peculiar fertilization mechanism. [source] Sperm ultrastructure and spermiogenesis in two Exogone species (Polychaeta, Syllidae, Exogoninae)INVERTEBRATE BIOLOGY, Issue 4 2002Adriana Giangrande The spermatozoa of Exogone naidina and E. dispar are characterized by a prominent bell-shaped acrosome, a spheroidal nucleus, and a conventional flagellum. During spermiogenesis, the acrosomal vesicle undergoes conspicuous modifications leading to its final bell shape with a posterior opening. The subacrosomal material initially shows radiating filaments but in mature sperms it appears as a meshwork of electron-opaque material. The acrosomal axis is oblique with respect to the main longitudinal sperm axis. The chromatin is arranged in electron-opaque strands in the early spermatids, then becomes amorphous, and is finally organized in filaments in mature sperms. Centrioles are orthogonally arranged beneath the nucleus and fibers radiate from the distal centriole to contact the plasma membrane and the single mitochondrion. The latter is located eccentrically on the side of the nucleus opposite the acrosome. A disk-shaped structure is evident beneath the distal centriole. The flagellar axoneme has a 9+2 microtubule pattern. A conspicuous glycocalyx surrounds the flagellar plasma membrane, and an electron-lucent space is present between these two structures at the distal tip of the flagellum. We compare the sperm morphology of these two species of Exogone with that described in other members of the subfamily Exogoninae. The fine structure of these two species supports the occurrence of an ent-aquasperm type within Exogoninae, in accordance with the brood strategy present within this subfamily. The mode of reproduction is of taxonomic importance for defining subfamilies within Syllidae, and is likely also of phylogenetic significance. Because epitoky is probably plesiomorphic, the ent-aquasperm type found in Exogoninae can be considered a derived feature within Syllidae. [source] Sperm structure of Rhopalura littoralis (Orthonectida)INVERTEBRATE BIOLOGY, Issue 2 2002George S. Slyusarev Abstract. We present here a description of the spermatozoon of Rhopalura littoralis, the first fine-structural study of an orthonectid sperm. The spermatozoon contains a slightly elongate nucleus and two centrioles orientated along the longitudinal axis of the sperm. The proximal centriole bears one rootlet. A single mitochondrion is present in the mid-piece region. An acrosome is absent. The sperm tail is a simple flagellum with 9+2 structure. We consider the orthonectan spermatozoon to be closer in structure to those of Porifera, Cnidaria, and Annelida, than to Aschelminthes and Platyhelminthes, to which orthonectids have previously been allied. [source] Acrosomal exocytosis of mouse sperm progresses in a consistent direction in response to zona pellucidaJOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2009Mariano G. Buffone Sperm acrosomal exocytosis is essential for successful fertilization, and the zona pellucida (ZP) has been classically considered as the primary initiator in vivo. At present, following what is referred to as primary binding of the sperm to the ZP, the acrosome reaction paradigm posits that the outer acrosomal membrane and plasma membrane fuse at random points, releasing the contents of the acrosome. It is then assumed that the inner acrosomal membrane mediates secondary binding of the sperm to the ZP. In the present work we used a live fluorescence imaging system and mouse sperm containing enhanced green fluorescent protein (EGFP) in their acrosomes. We compared the processes of acrosomal exocytosis stimulated by the calcium ionophore ionomycin or by solubilized ZP. As monitored by the loss of EGFP from the sperm, acrosomal exocytosis driven by these two agents occurred differently. When ionomycin was used, exocytosis started randomly (no preference for the anterior, middle or posterior acrosomal regions). In contrast, following treatment with solubilized ZP, the loss of acrosomal components always started at the posterior zone of the acrosome and progressed in an anterograde direction. The exocytosis was slower when stimulated with ZP and on the order of 10 sec, which is in accordance with other reports. These results demonstrate that ZP stimulates acrosomal exocytosis in an orderly manner and suggest that a receptor-mediated event controls this process of membrane fusion and release of acrosomal components. These findings are incorporated into a model. J. Cell. Physiol. 220: 611,620, 2009. © 2009 Wiley-Liss, Inc. [source] Sperm ultrastructure of the spider crab Maja brachydactyla (Decapoda: Brachyura)JOURNAL OF MORPHOLOGY, Issue 4 2010Carles G. Simeó Abstract This study describes the morphology of the sperm cell of Maja brachydactyla, with emphasis on localizing actin and tubulin. The spermatozoon of M. brachydactyla is similar in appearance and organization to other brachyuran spermatozoa. The spermatozoon is a globular cell composed of a central acrosome, which is surrounded by a thin layer of cytoplasm and a cup-shaped nucleus with four radiating lateral arms. The acrosome is a subspheroidal vesicle composed of three concentric zones surrounded by a capsule. The acrosome is apically covered by an operculum. The perforatorium penetrates the center of the acrosome and has granular material partially composed of actin. The cytoplasm contains one centriole in the subacrosomal region. A cytoplasmic ring encircles the acrosome in the subapical region of the cell and contains the structures-organelles complex (SO-complex), which is composed of a membrane system, mitochondria with few cristae, and microtubules. In the nucleus, slightly condensed chromatin extends along the lateral arms, in which no microtubules have been observed. Chromatin fibers aggregate in certain areas and are often associated with the SO-complex. During the acrosomal reaction, the acrosome could provide support for the penetration of the sperm nucleus, the SO-complex could serve as an anchor point for chromatin, and the lateral arms could play an important role triggering the acrosomal reaction, while slightly decondensed chromatin may be necessary for the deformation of the nucleus. J. Morphol., 2010. © 2009 Wiley-Liss, Inc. [source] Ultrastructure of spermatozoa and spermatophores of old world freshwater crabs (Brachyura: Potamoidea: Gecarcinucidae, Potamidae, and Potamonautidae)JOURNAL OF MORPHOLOGY, Issue 2 2009Sebastian Klaus Abstract We investigated the ultrastructure of spermatozoa and spermatophores of 19 palaeotropical freshwater crab species [12 species of the Gecarcinucidae, 6 of the Potamidae (Potamiscinae), and 1 species of the Potamonautidae (Deckeniinae: Hydrothelphusini)]. The investigated Potamiscinae have densely packed coenospermic spermatophores with the exception of Thaiphusa sirikit and Johora singaporensis that exhibit cleistospermia. In contrast, in the Gecarcinucidae the spermatozoa are loosely embedded in a mucous matrix. The gecarcinucid and potamiscine sperm differ, furthermore, in acrosomal structure and size. The acrosome in the Gecarcinucidae is much smaller and spherical, while the larger acrosome in the Potamiscinae has the tendency to be depressed. In the Potamiscinae, an additional middle acrosomal zone evolved between the acrosome ray zone and the outer acrosomal zone. Within the Gecarcinucidae, a differentiation into two groups (Gecarcinucinae and Parathelphusinae) is not supported by the present spermatological data. The sperm morphology of Hydrothelphusa aff. madagascariensis (Potamonautidae: Deckeniinae) differs from Potamonautes sidneyi (Potamonautidae: Potamonautinae) in acrosomal size and shape, and in the absence of a periopercular rim. A closer relationship of Deckeniinae and Gecarcinucidae cannot be confirmed by spermatology. J. Morphol., 2009. © 2008 Wiley-Liss, Inc. [source] Sperm morphology of the eurasian beaver, Castor fiber: An example of a species of rodent with highly derived and pleiomorphic sperm populationsJOURNAL OF MORPHOLOGY, Issue 8 2007Joanna B. Bierla Abstract The structural organization of the spermatozoon from the Eurasian beaver, Castor fiber (Family: Castoridae), was determined and compared to that of other sciuromorph rodents. The beaver spermatozoon has a head, which is variable in form but usually paddle-shaped, with a small nucleus and very large acrosome, and a tail that is relatively short compared to that of most other rodents. Transmission electron microscopy indicates that in most testicular spermatozoa the acrosome projects apically, although in a few it becomes partly flexed. During the final stages of maturation, however, the acrosome becomes highly folded so that the apical segment comes to lie alongside part of the acrosome that occurs lateral to the nucleus, with, in some cases, fusion taking place between the outer acrosomal membranes. The sperm nucleus is wedge-shaped, being broader basally and narrowing apically with an occasional large nuclear vacuole occurring. This spermatozoon structure is markedly different from that found in the other species of Geomyoidea, which is the sister group of the Castoridae. The findings thus emphasize the highly divergent nature of the beaver spermatozoon and demonstrate that, within the proposed Infraorder Castorimorpha, very large differences in sperm structure have evolved. J. Morphol., 2007. © 2007 Wiley-Liss, Inc. [source] Ultrastructure of the spermatid of Caprimulgus europaeus Linnaeus 1758, the European nightjar (Aves; Caprimulgidae), with phylogenetic implicationsJOURNAL OF MORPHOLOGY, Issue 10 2006Sandro Tripepi Abstract The sperm of Caprimulgus europaeus is typical of other nonpasserines in many respects. Features shared with Paleognathae and Galloanserae are the conical acrosome, shorter than the nucleus; the presence of a perforatorium and endonuclear canal; the presence of a proximal as well as distal centriole; the elongate midpiece with mitochondria grouped around a central axis (here maximally six mitochondria in ,10 tiers); and the presence of a fibrous or amorphous sheath around the principal piece of the axoneme. A major (apomorphic) difference from paleognaths and galloanserans is the short distal centriole, the midpiece being penetrated for most of its length by the axoneme and for only a very short proximal portion by the centriole. Nonpasserines differ from paleognaths in that the latter have a transversely ribbed fibrous sheath, whereas in nonpasserines it is amorphous, as in Caprimulgus, or absent. The absence of an annulus is an apomorphic feature of Caprimulgus, apodiform, psittaciform, gruiform, and passerine sperm, homoplastic in at least some of these. In contrast to passerines, in Caprimulgus the cytoplasmic microtubules in the spermatid are restricted to a transient longitudinal manchette. The structure of the spermatid and spermatozoon is consistent with placement of the Caprimulgidae near the Psittacidae, but is less supportive of close proximity to the Apodidae, from DNA,DNA hybridization and some other analyses. J. Morphol. © 2006 Wiley-Liss, Inc. [source] Sperm head morphology in 36 species of artiodactylans, perissodactylans, and cetaceans (Mammalia)JOURNAL OF MORPHOLOGY, Issue 2 2005Amy Downing Meisner Abstract Detailed descriptions of mammalian sperm morphology across a range of closely related taxa are rare. Most contributions have been generalized descriptions of a few distantly related mammalian species. These studies have emphasized a generalized ungulate sperm morphology, but have not underscored several important morphological differences in ungulate sperm, such as head shape. The present study is the first to document descriptions of sperm head morphology using cold field-emission scanning electron microscopy (FE-SEM) for a large number of closely related mammalian species. In total, the sperm of 36 species in three orders: Artiodactyla (even-toed ungulates), Cetacea (whales, porpoises, and dolphins), and Perissodactyla (odd-toed ungulates) were examined to gather new information relevant to the debate about the phylogenetic placement of cetaceans relative to terrestrial ungulates. In all species examined, the sperm heads were generally flattened and ovate in shape with a distinct apical ridge, although considerable variation in sperm head shape was detected, both within and between orders. In artiodactylans, the sperm head was uniformly flat in lateral view, whereas perissodactylan and cetacean sperm heads showed a distinct posterior thickening. In both artiodactylans and perissodactylans, the mitochondria were elongate and wound in a tight helix around the midpiece, whereas in cetaceans the mitochondria were rounded and appeared to be randomly arranged around the midpiece. Additionally, prominent ridges running along the anterior,posterior axis were observed in the postacrosomal region of the sperm head in four species of cetaceans. These ridges were not observed in any of the terrestrial ungulates examined. Pits or fenestrations were detected in the postacrosomal region in most artiodactylan species examined; these structures were not detected in perissodactylans or cetaceans. The equatorial segment of the acrosome was detected in the artiodactylan species examined, tentatively identified in perissodactylans, but not found in cetaceans. Its shape and location are described for relevant taxa. The presence of a recently reported substructure within the equatorial segment (the equatorial subsegment; Ellis et al. [2002] J Struct Biol 138:187,198) was detected in artiodactylans, and its shape is described for the species examined. © 2004 Wiley-Liss, Inc. [source] Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells.MICROSCOPY RESEARCH AND TECHNIQUE, Issue 4 2010Part 2: Changes in spermatid organelles associated with development of spermatozoa Abstract Spermiogenesis is a long process whereby haploid spermatids derived from the meiotic divisions of spermatocytes undergo metamorphosis into spermatozoa. It is subdivided into distinct steps with 19 being identified in rats, 16 in mouse and 8 in humans. Spermiogenesis extends over 22.7 days in rats and 21.6 days in humans. In this part, we review several key events that take place during the development of spermatids from a structural and functional point of view. During early spermiogenesis, the Golgi apparatus forms the acrosome, a lysosome-like membrane bound organelle involved in fertilization. The endoplasmic reticulum undergoes several topographical and structural modifications including the formation of the radial body and annulate lamellae. The chromatoid body is fully developed and undergoes structural and functional modifications at this time. It is suspected to be involved in RNA storing and processing. The shape of the spermatid head undergoes extensive structural changes that are species-specific, and the nuclear chromatin becomes compacted to accommodate the stream-lined appearance of the sperm head. Microtubules become organized to form a curtain or manchette that associates with spermatids at specific steps of their development. It is involved in maintenance of the sperm head shape and trafficking of proteins in the spermatid cytoplasm. During spermiogenesis, many genes/proteins have been implicated in the diverse dynamic events occurring at this time of development of germ cells and the absence of some of these have been shown to result in subfertility or infertility. Microsc. Res. Tech., 2010. © 2009 Wiley-Liss, Inc. [source] Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells.MICROSCOPY RESEARCH AND TECHNIQUE, Issue 4 2010Part 3: Developmental changes in spermatid flagellum, cytoplasmic droplet, egg plasma membrane, interaction of sperm with the zona pellucida Abstract Spermiogenesis constitutes the steps involved in the metamorphosis of spermatids into spermatozoa. It involves modification of several organelles in addition to the formation of several structures including the flagellum and cytoplasmic droplet. The flagellum is composed of a neck region and middle, principal, and end pieces. The axoneme composed of nine outer microtubular doublets circularly arranged to form a cylinder around a central pair of microtubules is present throughout the flagellum. The middle and principal pieces each contain specific components such as the mitochondrial sheath and fibrous sheath, respectively, while outer dense fibers are common to both. A plethora of proteins are constituents of each of these structures, with each playing key roles in functions related to the fertility of spermatozoa. At the end of spermiogenesis, a portion of spermatid cytoplasm remains associated with the released spermatozoa, referred to as the cytoplasmic droplet. The latter has as its main feature Golgi saccules, which appear to modify the plasma membrane of spermatozoa as they move down the epididymal duct and hence may be partly involved in male gamete maturation. The end product of spermatogenesis is highly streamlined and motile spermatozoa having a condensed nucleus equipped with an acrosome. Spermatozoa move through the female reproductive tract and eventually penetrate the zona pellucida and bind to the egg plasma membrane. Many proteins have been implicated in the process of fertilization as well as a plethora of proteins involved in the development of spermatids and sperm, and these are high lighted in this review. Microsc. Res. Tech., 2010. © 2009 Wiley-Liss, Inc. [source] Toxic effect of environmental acid-stress on the sperm of a hill-stream fish Devario aequipinnatus: A scanning electron microscopic evaluationMICROSCOPY RESEARCH AND TECHNIQUE, Issue 2 2009Sudip Dey Abstract Environmental stress due to acidic pH of water was found to be one of the major factors leading to toxic effects on the sperm of a hill-stream fish Devario aequipinnatus of Meghalaya, India. The Scanning Electron Microscopy of the transverse section of testes of the fish collected from its natural habitat with acidic pH (5.6,6.0) showed that the sperms were clumped together and their tails were either absent or were of extremely small length. The acrosome and midpiece were also not well differentiated. When the fingerlings from the natural habitat were reared to maturity in aquarium with water from natural habitat after changing the pH to alkaline range (8.0,8.2), the clumping of the sperm was not observed. The sperm tail was found to be well-developed along with well-differentiated acrosome and midpiece. Since the only change in the water quality parameters of the experimental aquarium as compared to those of the natural habitat was the pH, it is evident that the abnormal features of the sperm observed in fish from natural habitat is mainly because of environmental acid stress. Microsc. Res. Tech., 2009. © 2008 Wiley-Liss, Inc. [source] Localizations of intracellular calcium and Ca2+ -ATPase in hamster spermatogenic cells and spermatozoaMICROSCOPY RESEARCH AND TECHNIQUE, Issue 8 2006H.L. Feng Abstract Calcium plays a predominant role regulating many functional processes of spermatogenesis and fertilization. The purpose of the present study is to define the exact location of calcium as well as examine the role it plays during spermatogenesis and sperm capacitation. Testes and epididymides were obtained from adult healthy male hamsters. Spermatozoa were incubated with modified Tyrode's medium up to 4 h at 37°C for sperm capacitation in vitro. Samples of the testes and sperm cells were analyzed by cytochemical techniques to determine the location of calcium and Ca2+ -ATPase and the percentage of acrosome reactions under light and electron microscopy. The data showed that (1) Sertoli cells exhibited numerous calcium precipitates as large, round, electron-dense bodies distributed throughout the cytoplasm and the mitochondrial matrix. Fine calcium precipitates existed in fewer numbers in the intracellular storage sites of spermatogonia and primary spermatocytes, in sharp distinction to secondary spermatocyte and spermatids, which showed an abundance of large and round calcium precipitates, especially in the mitochondrial matrix of spermatids. More calcium deposits were distributed in the plasma membrane (PM), acrosome membrane, and matrices of the acrosome and mitochondria following capacitation; (2) Ca2+ -ATPase was found in the endoplasmic reticulum system and PM of noncapacitated spermatozoa as well as Sertoli cells. Capacitated spermatozoa showed a weak signal. These results suggest that the presence of calcium in spermatogenic cells might play a role in cell growth and differentiation during spermatogenesis. The Ca2+ -ATPase function may be inhibited during capacitation, leading to an increase in acrosomal calcium level and triggering of acrosomal exocytosis. Microsc. Res. Tech., 2006. © 2006 Wiley-Liss, Inc. [source] Detection and characterization of gamete-specific molecules in Mytilus edulis using selective antibody productionMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 1 2009Heiko Stuckas Abstract The mussel Mytilus edulis can be used as model to study the molecular basis of reproductive isolation because this species maintains its species integrity, despite of hybridizing in zones of contact with the closely related species M. trossulus or M. galloprovincialis. This study uses selective antibody production by means of hybridoma technology to identify molecules which are involved in sperm function of M. edulis. Fragmented sperm were injected into mice and 25 hybridoma cell clones were established to obtain monoclonal antibodies (mAb). Five clones were identified producing mAb targeting molecules putatively involved in sperm function based on enzyme immunoassays, dot and Western blotting as well as immunostaining of tissue sections. Specific localization of these mAb targets on sperm and partly also in somatic tissue suggests that all five antibodies bind to different molecules. The targets of the mAb obtained from clone G26-AG8 were identified using mass spectrometry (nano-LC-ESI-MS/MS) as M6 and M7 lysin. These acrosomal proteins have egg vitelline lyses function and are highly similar (76%) which explains the cross reactivity of mAb G26-AG8. Furthermore, M7 lysin was recently shown to be under strong positive selection suggesting a role in interspecific reproductive isolation. This study shows that M6 and M7 lysin are not only found in the sperm acrosome but also in male somatic tissue of the mantle and the posterior adductor muscle, while being completely absent in females. The monoclonal antibody G26-AG8 described here will allow elucidating M7/M6 lysin function in somatic and gonad tissue of adult and developing animals. Mol. Reprod. Dev. 76: 4,10, 2009. © 2008 Wiley-Liss, Inc. [source] Dynamin 2 associates with complexins and is found in the acrosomal region of mammalian spermMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 6 2007Longmei Zhao Abstract Previous data showed that complexin I, a SNARE regulatory protein, is localized in and/or around the acrosome and is necessary for the acrosome reaction in sperm. To understand how complexin I regulates the acrosome reaction, we used complexin-GST pulldown assays to identify interacting proteins. We showed that both complexins I and II bound mouse sperm dynamin 2. Dynamin 2 is a 100 kDa GTPase essential to many aspects of endocytosis but its potential role in exocytosis is unknown. Dynamin 2 is expressed in rat testis and widely expressed in other tissues; however, the function of dynamin 2 in germ cells is uncertain. Dynamin 2 protein was detected in mouse testis and was most abundant in or around the developing acrosome of spermatids. In addition, dynamin 2 was co-localized with complexin I in the acrosomal region of mammalian sperm. Its co-localization and interaction with complexin I suggest that dynamin 2 may play a role during acrosome formation and/or acrosomal exocytosis. Mol. Reprod. Dev. 74: 750,757, 2007. © 2006 Wiley-Liss, Inc. [source] Identification of a heat-shock protein Hsp40, DjB1, as an acrosome- and a tail-associated component in rodent spermatozoaMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 2 2007Masamichi Doiguchi Abstract Iba1 is a 17-kDa EF-hand protein highly expressed in the cytoplasm of elongating spermatids in testis. Using Iba1 as a bait, we performed yeast Two-hybrid screening and isolated a heat-shock protein Hsp40, DjB1, from cDNA library of mouse testis. To characterize DjB1 that is encoded by Dnajb1 gene, we carried out immunoblot analyses, in situ hybridization, and immunohistochemistry. Immunoblot analyses showed that DjB1was constitutively expressed in mouse testis and that its expression level was not changed by heat shock. Dnajb1 mRNA was exclusively expressed in spermatocytes and round spermatids in mouse testis, and Dnajb1 protein DjB1 was predominantly expressed in the cytoplasm of spermatocytes, round spermatids, and elongating spermatids. In mature mouse spermatozoa, DjB1 was localized in the middle and the end pieces of flagella as well as in association with the head (acrosomal region). Association of DjB1 with the acrosomal region in sperm head was also observed in rat spermatozoa. These data suggested that DjB1, which was constitutively expressed in postmeiotic spermatogenic cells in testis, was integrated into spermatozoa as at least two components, that is, sperm head and tail of rodent spermatozoa. Mol. Reprod. Dev. © 2006 Wiley-Liss, Inc. [source] The mammalian acrosome as a secretory lysosome: New and old evidenceMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 11 2006Ricardo D Moreno Abstract The morphological and biochemical characteristics of the acrosome depart well from any other vesicles in somatic cells, making it one of a kind amongst secretory vesicles. The components of the acrosome include a mixture of unique enzymes like acrosin and other enzymes that when present in somatic cells are commonly found in lysosomes, peroxisomes, and even in the cytoplasm. Several observations have pointed out that acrosomal biogenesis has unique features not previously described in secretory vesicle biogenesis of somatic cells. In this review we discuss the evidence supporting a molecular link between the machinery involved in lysosome and acrosome biogenesis, link which may help account for the acrosome unique composition. Mol. Reprod. Dev. 73: 1430,1434, 2006. © 2006 Wiley-Liss, Inc. [source] Tyrosine protein kinases and spermatogenesis: truncation mattersMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2006Abraham L. Kierszenbaum Abstract Protein phosphorylation on serine/threonine or tyrosine residues represents a significant regulatory mechanism in signal transduction during spermatogenesis, oogenesis, and fertilization. There are several families of tyrosine protein kinases operating during spermatogenesis: the Src family of tyrosine protein kinases; the Fujinami poultry sarcoma/feline sarcoma (Fps/Fes) and Fes-related protein (Fer) subfamily of non-receptor proteins; and c-kit, the transmembrane tyrosine kinase receptor that belongs to the family of the PDGF receptor. A remarkable characteristic is the coexistence of full-length and truncated tyrosine kinases in testis. Most of the truncated forms are present during spermiogenesis. Examples include the truncated forms of Src tyrosine kinase hematopoietic cell kinase (Hck), FerT, and tr-kit. A feature of FerT and tr-kit is the kinase domain that ensures the functional properties of the truncated protein. FerT, a regulator of actin assembly/disassembly mediated by cortactin phosphorylation, is present in the acroplaxome, a cytoskeletal plate containing an F-actin network and linking the acrosome to the spermatid nuclear envelope. This finding suggests that Fer kinase represents one of the tyrosine protein kinases that may contribute to spermatid head shaping. The c-kit ligand, stem cell factor (SCF), which induces c-kit dimerization and autophosphorylation, exists as both membrane-associated and soluble. Although tyrosine protein kinases are prominent in spermatogenesis, a remarkable observation is the paucity of phenotypic alterations in spermatogenic cells in male mice targeted with Fer kinase-inactivating mutation. It is possible that the redundant functions of the tyrosine protein kinase pool present during spermatogenesis may explain the limited phenotypes of single mutant mice. The production of compound and viable mutant mice, lacking the expression of two or more tyrosine kinases, may shed light on this intriguing issue. Mol. Reprod. Dev. © 2006 Wiley-Liss, Inc. [source] |