Acoustic Character (acoustic + character)

Distribution by Scientific Domains


Selected Abstracts


Localized dynamics in network glasses

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 11 2004
C. Halcoussis
Abstract In this work we studied by means of inelastic x-ray scattering (IXS) the nature of collective excitations in the network forming glass Ba(PO3)2. In particular, we provide the first experimental evidence for the presence of a multitude of collective excitations in a glass, situated in the energy span from 5 to 20 meV. Their nearly dispersionless evolution from 5 to 25 nm,1 suggests their largely localized nature mainly caused by the incorporated metallic cations acting as network modifiers. We suggest that these non-propagating vibrational states result from an eigenvector exchange with propagating density fluctuations of an "acoustic" character. This study gives an insight into the excess of vibrational states known as the "Boson" peak from many neutron and optical scattering experiments and being omnipresent in all kinds of glasses. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Sonographic detection of the optic radiation

ACTA PAEDIATRICA, Issue 10 2005
Annemieke Boxma
Abstract Objective: To describe a region of hyperechoic white matter adjacent to the atrium of the lateral ventricle of preterms, and to speculate on the relevance of detecting preterm white matter injury. Patients and methods: Cranial ultrasound images of 92 preterms of gestational age (GA) 32 wk or less were reviewed. For each infant, one first week standard coronal image was used for measurement of grey values around the para-atrial region of interest (PAROI) relative to the choroid plexus. For verification of the sonographic anatomy, MR images of an adult brain were used. For reference, neuro-anatomical images were compared in several atlases. In a group of nine preterms of similar GA with cystic periventricular leukomalacia (PVL) or MR-confirmed white matter disease, the disappearance of the PAROI was examined. Results: The hyperechoic para-atrial area, subjectively detected in 84% of the patients, was situated bilaterally between the inner end of the lateral fissure and the upper third of the choroid plexus. In white matter caudal to the atrium, the hyperechoic band could be pursued towards the calcarine area. The average ratio of grey value around the PAROI to the choroid plexus was 0.787 (SD=0.072, median 0.791). There was no correlation between PAROI grey value and gestational age. At 26 wk gestational age, the average ratio was 0.781 (n=14), and 0.789 (n=17) at 31 wk. Location of the PAROI agrees with the angle of the upper loop of the optic radiation. None of the nine infants with white matter damage had PAROIs clearly distinguishable from flaring. Conclusion: The symmetrical and unchanged acoustic character between 26 and 31 wk of gestational age argues in favour of the hypothesis that the PAROI is an anatomical structure. The localization of the hyperechoic band supports the hypothesis that it represents part of the optic radiation. Further study is needed to examine the absence of a hyperechoic para-atrial band as a prognostic marker of the extension and severity of white matter injury. [source]


Geographic variation in loud calls of sportive lemurs (Lepilemur ssp.) and their implications for conservation

AMERICAN JOURNAL OF PRIMATOLOGY, Issue 9 2008
Maria Méndez-Cárdenas
Abstract Bioacoustical studies in nonhuman primates have shown that loud calls can be reliably used as a noninvasive diagnostic tool for discriminating cryptic taxa, for their monitoring in the field as well as for the reconstruction of their phylogeny. To date, it is unknown, whether loud calls can be used for these purposes in sportive lemurs, for which current genetic studies suggest the existence of at least 24 cryptic species. The aim of this study was to compare the structure of loud calls of populations of sportive lemurs to characterize informative acoustic traits for taxa discrimination and to establish a phylogenetic tree based on acoustic structure. We have based our study on Inter-River-Systems (IRSs) as operational taxonomic units. Samples were collected from nine different localities of four IRSs along a transect from northwestern to northern Madagascar. Two call types, the ouah and the high-pitched call, were present in almost all IRSs. Six temporal and eight spectral parameters were measured in 196 calls of the best quality given by 21 different males. Variation within and between IRSs was assessed by multivariate statistics. Loud calls differed significantly among the different IRSs. The IRSs varied most in spectral parameters, whereas temporal parameters were less variable. Phylogenetic analysis using parsimony yielded 11 out of 17 acoustic characters as phylogenetically informative. The acoustic tree had an average branch support of 78%. Its topology coincided less with geographic distances than with genetic tree topology. Altogether our findings revealed that loud calls separated geographically isolated populations of sportive lemurs specifically. Based on these results, noninvasive tools for diagnosis and monitoring of cryptic species in nature can be developed for conservation management. Am. J. Primatol. 70:828,838, 2008. © 2008 Wiley-Liss, Inc. [source]


Evolution of advertisement signals in North American hylid frogs: vocalizations as end-products of calling behavior

CLADISTICS, Issue 6 2006
Tony Robillard
We studied the advertisement signals in two clades of North American hylid frogs in order to characterize the relationships between signal acoustic structure and underlying behavior. A mismatch was found between the acoustic structure and the mechanism of sound production. Two separate sets of phylogenetic characters were coded following acoustic versus mechanistic criteria, and exploratory treatments were made to compare their respective phylogenetic content in comparison with the molecular phylogeny (Faivovich et al., 2005). We discuss the consequences of the acoustic/mechanistic mismatch in terms of significance of acoustic characters for phylogenetic and comparative studies; and the evolution of vocalizations in North American treefrogs. Considering only the acoustic structure of frog vocalizations can lead to misleading results in terms of both phylogenetic signal and evolution of vocalizations. In contrast, interpreting the acoustic signals with regard to the mechanism of sound production results in consistent phylogenetic information. The mechanistic coding also provides strong homologies for use in comparative studies of frog vocalizations, and to derive and test evolutionary hypotheses. © The Willi Hennig Society 2005. [source]