| |||
Acid Isomers (acid + isomer)
Selected AbstractsChemInform Abstract: High-Resolution Infrared Spectroscopy of trans- and cis-H18ON18O: Equilibrium Structures of the Nitrous Acid Isomers.CHEMINFORM, Issue 5 2009V. Sironneau J. Orphal Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source] Disposition of perfluorinated acid isomers in sprague-dawley rats; Part 1: Single doseENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2009Jonathan P. Benskin Abstract Perfluorinated acids (PFAs) and their precursors (PFA-precursors) exist in the environment as linear and multiple branched isomers. These isomers are hypothesized to have different biological properties, but no isomer-specific data are currently available. The present study is the first in a two-part project examining PFA isomer-specific uptake, tissue distribution, and elimination in a rodent model. Seven male Sprague-Dawley rats were administered a single gavage dose of approximately 500 ,g/kg body weight perfluorooctane sulfonate (C8F17SO3,, PFOS), perfluorooctanoic acid (C7F15CO2H, PFOA), and perfluorononanoic acid (C8F17CO2H, PFNA) and 30 ,g/kg body weight perfluorohexane sulfonate (C6F13SO3,, PFHxS). Over the subsequent 38 d, urine, feces, and tail-vein blood samples were collected intermittently, while larger blood volumes and tissues were collected on days 3 and 38 for isomer analysis by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). For all PFAs, branched isomers generally had lower blood depuration half-lives than the corresponding linear isomer. The most remarkable exception was for the PFOS isomer containing an alpha-perfluoromethyl branch (1m -PFOS), which was threefold more persistent than linear PFOS, possibly due to steric shielding of the hydrophilic sulfonate moiety. For perfluoromonomethyl-branched isomers of PFOS, a structure,property relationship was observed whereby branching toward the sulfonate end of the perfluoroalkyl chain resulted in increased half-lives. For PFHxS, PFOA, and PFOS, preferential elimination of branched isomers occurred primarily via urine, whereas for PFNA preferential elimination of the isopropyl isomer occurred via both urine and feces. Changes in the blood isomer profiles over time and their inverse correlation to isomer elimination patterns in urine, feces, or both provided unequivocal evidence of significant isomer-specific biological handling. Source assignment based on PFA isomer profiles in biota must therefore be conducted with caution, because isomer profiles are unlikely to be conserved in biological samples. [source] Disposition of perfluorinated acid isomers in sprague-dawley rats; Part 2: Subchronic doseENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2009Amila O. De Silva Abstract Two major industrial synthetic pathways have been used to produce perfluorinated acids (PFAs) or their precursors: Telomerization and electrochemical fluorination (ECF). Products of telomer and ECF origin can be distinguished by structural isomer profiles. A mixture of linear and branched perfluoroalkyl isomers is associated with ECF. Telomer products characteristically consist of a single perfluoroalkyl geometry, typically linear. In biota, it is unclear if the isomer profile is conserved relative to the exposure medium and hence whether PFA isomer profiles in organisms are useful for distinguishing environmental PFA sources. A companion study suggested isomer-specific disposition following a single oral gavage exposure to rats. To confirm these findings under a more realistic subchronic feeding scenario, male and female rats were administered PFA isomers by diet for 12 weeks, followed by a 12-week depuration period. The diet contained 500 ng/g each of ECF perfluorooctanoate (PFOA, ,80% n -PFOA), ECF perfluorooctane sulfonate (PFOS, ,70% n -PFOS), and linear and isopropyl perfluorononanoate (n - and iso -PFNA). Blood sampling during the exposure phase revealed preferential accumulation of n -PFOA and n -PFNA compared to most branched isomers. Female rats depurated all isomers faster than males. Both sexes eliminated most branched perfluorocarboxylate isomers more rapidly than the n -isomer. Elimination rates of the major branched PFOS isomers were not statistically different from n -PFOS. Two minor isomers of ECF PFOA and one branched PFOS isomer had longer elimination half-lives than the n-isomers. Although extrapolation of these pharmacokinetics trends in rats to humans and wildlife requires careful consideration of dosage level and species-specific physiology, cumulative evidence suggests that perfluorocarboxylate isomer profiles in biota may not be suitable for quantifying the relative contributions of telomer and ECF sources. [source] Effects of hydrogenation parameters on trans isomer formation, selectivity and melting properties of fatEUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 3 2008Anar Musavi Abstract Effects of hydrogenation conditions (temperature, hydrogen pressure, stirring rate) on trans fatty acid formation, selectivity and melting behavior of fat were investigated. To this aim, soybean oil was hydrogenated under various conditions and fatty acid composition, trans isomer formation, slip melting point (SMP), solid fat content (SFC) and iodine number (IV) of the samples withdrawn at certain intervals of the reactions were monitored. A constant ratio (0.03%) of Nysosel 222 was used in the various combinations of temperature (150, 165 and 180,°C), stirring speed (500, 750 and 1000,rpm) and hydrogen pressure (1, 2 and 3,bar). Raising the temperature increased the formation of fatty acid isomers, whereas higher stirring rates decreased this formation, while changes in hydrogen pressure had no effect or slightly reduced it, depending on other parameters. Results also indicated that the trans fatty acid ratio increased with IV reduction, reached the highest value when the IV was about 70 and decreased at IV < 70 due to saturation. Selectivity values (S21) at that point ranged between 5.78 and 11.59. Lower temperatures and higher stirring rates decreased not only the trans isomer content but also the S21 values at significant levels. However, same effects were not observed with the changes in hydrogen pressure. It was determined that a high SMP does not necessarily mean a high SFC. Selective conditions produced samples with higher SFC but lower SMP, which is possibly because of higher trans isomer formation as well as lower saturation. [source] Enantioselective Recognition of Aliphatic Amino Acids by ,-Cyclodextrin Derivatives Bearing Aromatic Organoselenium Moieties on the Primary or Secondary SideEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 8 2003Yu Liu Abstract Spectrophotometric titrations have been performed in order to determine the stability constants of inclusion complexation of some aliphatic amino acids with four structurally related organoselenium-modified ,-cyclodextrins: mono(6-phenylseleno-6-deoxy)-,-cyclodextrin (1a), mono[6-(p -methoxyphenylseleno)-6-deoxy]-,-cyclodextrin (1b), mono(2-phenylseleno-2-deoxy)-,-cyclodextrin (2a), and mono[2-(p -methoxyphenylseleno)-2-deoxy]-,-cyclodextrin (2b). Conformation analysis by circular dichroism and 2D NMR spectroscopic studies revealed that the aryl-substituted ,-cyclodextrins gave self-inclusion intramolecular complexes in aqueous solution, while the extent of penetration depended both on the positions and on the structures of substituents. Quantitative investigation on the binding ability of the hosts with amino acids showed that they were able to recognize the size and the shape of guests, affording supramolecular complexes with quite small stability constants ranging from 24 to 355 M,1. The molecular recognition abilities are discussed from the viewpoints of induced-fitting mechanisms, geometric complementary, and cooperative binding processes. Furthermore, these ,-cyclodextrin derivatives displayed considerable enantioselectivity towards L/D -amino acid isomers, giving the highest L -enantioselectivity (up to 8.4) for inclusion complexation between leucine and 2a. The binding modes of L/D -leucine with 1b were elucidated from NOESY studies and the chiral recognition phenomena were interpreted accordingly. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source] Screening of urocanic acid isomers in human basal and squamous cell carcinoma tumors compared with tumor periphery and healthy skinEXPERIMENTAL DERMATOLOGY, Issue 10 2008Juan Manuel Decara Abstract:,Trans -urocanic acid is a major chromophore for ultraviolet (UV) radiation in human epidermis. The UV induces photoisomerization of trans -urocanic acid (tUCA) form to cis -urocanic acid (cUCA) and has been reported as an important mediator in the immunosuppression induced by UV. This immunomodulation has been recognized as an important factor related to skin cancer development. This is the first time that UCA isomers have been measured in epidermis of skin biopsies from patients with squamous cell carcinoma (SCC) and with basal cell carcinoma (BCC) and compared with the tumor periphery and biopsies of healthy photoexposed and non-photoexposed skin as controls. The UCA isomers were separated and quantified by high performance liquid chromatography. Analysis of UCA in healthy skin showed significant increase in total UCA content in non-photoexposed body sites compared with highly exposed skins. In contrast, the percentage of cUCA was higher in photoexposed body sites. Maximal levels of cUCA were found in cheek, forehead and forearm and lower levels in abdomen and thigh. No differences were found in total UCA concentration between the tumor samples and healthy photoexposed skin. However, differences were found in relation between isomers. Higher levels of cUCA were detected in SCC biopsies (44% of total UCA) compared with samples of BCC and that of healthy photoexposed skin (30%). These results suggest that the UV radiation exposure, a main factor in development of SCC can be mediated, apart from direct effect to cells (DNA damage), by immunosuppression pathways mediated by high production of cUCA. [source] Thermochemistry for enthalpies and reaction paths of nitrous acid isomersINTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 7 2007Rubik Asatryan Recent studies show that nitrous acid, HONO, a significant precursor of the hydroxyl radical in the atmosphere, is formed during the photolysis of nitrogen dioxide in soils. The term nitrous acid is largely used interchangeably in the atmospheric literature, and the analytical methods employed do not often distinguish between the HONO structure (nitrous acid) and HNO2 (nitryl hydride or isonitrous acid). The objective of this study is to determine the thermochemistry of the HNO2 isomer, which has not been determined experimentally, and to evaluate its thermal and atmospheric stability relative to HONO. The thermochemistry of these isomers is also needed for reference and internal consistency in the calculation of larger nitrite and nitryl systems. We review, evaluate, and compare the thermochemical properties of several small nitric oxide and hydrogen nitrogen oxide molecules. The enthalpies of HONO and HNO2 are calculated using computational chemistry with the following methods of analysis for the atomization, isomerization, and work reactions using closed- and open-shell reference molecules. Three high-level composite methods G3, CBS-QB3, and CBS-APNO are used for the computation of enthalpy. The enthalpy of formation, ,Hof(298 K), for HONO is determined as ,18.90 ± 0.05 kcal mol,1 (,79.08 ± 0.2 kJ mol,1) and as ,10.90 ± 0.05 kcal mol,1 (,45.61 ± 0.2 kJ mol,1) for nitryl hydride (HNO2), which is significantly higher than values used in recent NOx combustion mechanisms. H-NO2 is the weakest bond in isonitrous acid; but HNO2 will isomerize to HONO with a similar barrier to the HONO bond energy; thus, it also serves as a source of OH in atmospheric chemistry. Kinetics of the isomerization is determined; a potential energy diagram of H/N/O2 system is presented, and an analysis of the triplet surface is initiated. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 378,398, 2007 [source] Drought Tolerance in Cotton: Involvement of Non-enzymatic ROS-Scavenging CompoundsJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2009L. Yildiz-Aktas Abstract Compounds with reactive oxygen species (ROS)-scavenging ability were studied. High-performance liquid chromatography (HPLC) pattern of polyphenols, contents of proline and carotenoids, and antiradical (AR) capacity were determined. The malonyldialdehyde (MDA) level was also assessed. Tolerant and sensitive cotton genotypes were compared, grown in the Aegean region of Turkey at normal (field capacity) and limited (1/3 field capacity) water supply. Chlorogenic acid isomers and flavonoids were identified in HPLC pattern of polyphenols. At normal water supply, the tolerant genotype was distinguished by a higher content of all polyphenol types, higher proline, carotenoids and AR capacity and lower MDA level compared with the sensitive genotype. In plants subjected to water deficit, a decline of all polyphenol compounds, carotenoids and AR capacity was observed. However, this response was less pronounced in the tolerant than in the sensitive genotype, i.e. despite the stress conditions imposed, the tolerant plants maintained a more effective defence system. The data are corroborated by the weaker structural membrane damage in the drought-exposed tolerant vs. sensitive genotype, according to the MDA test. Hence, diverse chemical types are involved in the non-enzymatic ROS-scavenging system of cotton plants and can be related to the drought tolerance of this important crop. [source] Effects of Trans and Conjugated LC N-3 Polyunsaturated Fatty Acids on Lipid Composition and Abdominal Fat Weight in RatsJOURNAL OF FOOD SCIENCE, Issue 8 2008T. Okada ABSTRACT:,Trans and conjugated fatty acids may exhibit either beneficial or detrimental bioactive effects depending on their metabolic properties. This study was conducted to elucidate if isomerization and conjugation of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) demonstrate more favorable bioactivity on lipid metabolism compared to unmodified EPA and DHA. The effects of dietary intake of trans and conjugated forms of EPA and DHA on lipid metabolism were evaluated in animal trials and compared to a control group fed soybean oil. None of the experimental diets showed significant differences from the control in terms of body weight; however, the white adipose tissue weight of rodents fed trans DHA, conjugated EPA (CEPA), and conjugated DHA (CDHA) was significantly lower than the control. Triacylglycerol levels in plasma were significantly decreased in groups fed trans DHA (17.2 mg/dL) and CDHA (31.9 mg/dL) relative to the control (51.3 mg/dL). The total cholesterol concentrations were significantly lower than the control (68.0 mg/dL) in all experimental groups (47.3 to 53.7 mg/dL) except CEPA (58.3 mg/dL). Fatty acid compositions of lipids extracted from rodent livers were influenced by the dietary fatty acid profiles, with all groups showing higher concentrations of stearic acid and lower levels of linoleic acid compared to the control. Rodents fed trans DHA did not have detectable levels of these fatty acid isomers in their livers, suggesting either quick metabolism or a difficulty with bio-absorption. [source] Extent and mechanism of solvation and partitioning of isomers of substituted benzoic acids: A thermodynamic study in the solid state and in solutionJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 9 2008German L. Perlovich Abstract Temperature dependency of saturated vapour pressure and thermochemical characteristics of fusion processes for 2-, 3- and 4-methoxybenzoic acids (anisic acids) were measured and thermodynamic functions of sublimation, fusion, and evaporation calculated. A new approach to split specific and nonspecific energetic terms in the crystal lattice was developed. For methoxybenzoic acid isomers as well as for a number of analogous molecules, a parameter describing molecular packing density by the ratio of free volume of the molecules in the crystal lattice and van der Waals molecular volume is defined. Its relationship to Gibbs energy of sublimation and to the respective melting points was analysed. Temperature dependencies of solubility in buffers with pH 2.0 and 7.4, n -octanol and n -hexane were measured. The thermodynamic functions of solubility, solvation and transfer processes were deduced. Concentration dependence of partition coefficients for the outlined isomers was measured. Specific and nonspecific solvation terms were distinguished using the transfer from the ,inert' n -hexane to the other solvents. Comparison analysis of specific and nonspecific interactions in the solid state and in solution was carried out. A diagram enabling analysis of the mechanism of the partitioning process was applied. It was found that position of substituents essentially affects the mechanism of partitioning in buffer pH 2.0, however, at pH 7.4, the mechanism is independent of the position of the substituent. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:3883,3896, 2008 [source] Conjugated linoleic acid isomers: Differences in metabolism and biological effectsBIOFACTORS, Issue 1 2009Itziar Churruca Abstract The term conjugated linoleic acid (CLA) refers to a mixture of linoleic acid positional and geometric isomers, characterized by having conjugated double bonds, not separated by a methylene group as in linoleic acid. CLA isomers appear as a minor component of the lipid fraction, found mainly in meat and dairy products from cows and sheep. The most abundant isomer is cis -9,trans -11, which represents up to 80% of total CLA in food. These isomers are metabolized in the body through different metabolic pathways, but important differences, that can have physiological consequences, are observed between the two main isomers. The trans -10,cis -12 isomer is more efficiently oxidized than the cis -9,trans -11 isomer, due to the position of its double bounds. Interest in CLA arose in its anticarcinogenic action but there is an increasing amount of specific scientific literature concerning the biological effects and properties of CLA. Numerous biological effects of CLA are due to the separate action of the most studied isomers, cis -9,trans -11 and trans -10,cis -12. It is also likely that some effects are induced and/or enhanced by these isomers acting synergistically. Although the cis -9,trans -11 isomer is mainly responsible for the anticarcinogenic effect, the trans -10,cis -12 isomer reduces body fat and it is referred as the most effective isomer affecting blood lipids. As far as insulin function is concerned, both isomers seem to be responsible for insulin resistance in humans. Finally, with regard to the immune system it is not clear whether individual isomers of CLA could act similarly or differently. © 2009 International Union of Biochemistry and Molecular Biology, Inc. [source] |