Acid Injection (acid + injection)

Distribution by Scientific Domains


Selected Abstracts


Continuous local intrahippocampal delivery of adenosine reduces seizure frequency in rats with spontaneous seizures

EPILEPSIA, Issue 9 2010
Annelies Van Dycke
Summary Purpose:, Despite different treatment options for patients with refractory epilepsy such as epilepsy surgery and neurostimulation, many patients still have seizures and/or drug-related cerebral and systemic side effects. Local intracerebral delivery of antiepileptic compounds may represent a novel strategy with specific advantages such as the option of higher local doses and reduced side effects. In this study we evaluate the antiepileptic effect of local delivery of adenosine in the kainic acid rat model, a validated model for temporal lobe epilepsy. Methods:, Fifteen rats, in which intraperitoneal kainic acid injection had induced spontaneous seizures, were implanted with a combination of depth electrodes and a cannula in both hippocampi. Cannulas were connected to osmotic minipumps to allow continuous hippocampal delivery. Rats were freely moving and permanently monitored by video-EEG (electroencephalography). Seizures were scored during 2 weeks of local hippocampal delivery of saline (baseline), followed by 2 weeks of local adenosine (6 mg/ml) (n = 10) or saline (n = 5) delivery (0.23 ,l/h) (treatment). In 7 of 10 adenosine-treated rats, saline was also delivered during a washout period. Results:, During the treatment period a mean daily seizure frequency reduction of 33% compared to the baseline rate was found in adenosine-treated rats (p < 0.01). Four rats had a seizure frequency reduction of at least 50%. Both nonconvulsive and convulsive seizures significantly decreased during the treatment period. In the saline-control group, mean daily seizure frequency increased with 35% during the treatment period. Conclusions:, This study demonstrates the antiseizure effect of continuous adenosine delivery in the hippocampi in rats with spontaneous seizures. [source]


Alterations in cerebral metabolism by the neurotoxin kainic acid studied by 13C MRS

JOURNAL OF NEUROCHEMISTRY, Issue 2002
E. Olstad
Kainic acid is a potent agonist at the kainate subclass of ionotropic glutamate receptors, and functional kainate receptors have not only been demonstrated on neurons but also on glial cells in culture. Kainic acid injections are used to induce limbic seizures in rodents. When combined with injections of [1-13C]glucose and [1,2-13C]acetate followed by analyses of forebrain extracts using 13C magnetic resonance spectroscopy (MRS) and HPLC information about glial neuronal interaction can be obtained. Using kainic acid treatment and 24 h later injection of 13C label a significant increase in label derived from [1,2-13C]acetate was observed in glutamine and glutamate. Label derived from [1-13C]glucose was unchanged in most metabolites, however, a decrease was observed in [2-13C]GABA. It should be noted that only astrocytes are able to utilize acetate as a substrate, whereas acetyl CoA derived from glucose is metabolized predominantly in the neuronal tricarboxylic acid cycle. These results indicate that turnover of metabolites was increased predominantly in astrocytes whereas glutamatergic neurons were not affected. However, GABAergic neurons showed decreased GABA labelling, possibly due to reduced GABA release 24 h after kainic acid injection. Taken together with results obtained 2 weeks after kainic acid injection, it can be suggested that increased astrocytic activity one day after epileptic seizures results, subsequently, in an increased amino acid turnover in neurons. Cell culture work was also performed, results will be presented at the meeting. [source]


Involvement of thromboxane A2 (TXA2) in the early stages of oleic acid-induced lung injury and the preventive effect of ozagrel, a TXA2 synthase inhibitor, in guinea-pigs

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 4 2004
Yoichi Ishitsuka
ABSTRACT An intravenous injection of oleic acid into animals can produce a lung injury with hypoxaemia and pulmonary vascular hyper-permeability. Although oleic acid lung injury is used as a model of acute respiratory distress syndrome (ARDS), the precise mechanisms of the lung injury are still unclear. We have investigated whether thromboxane A2 (TXA2) participated in the lung injury and have evaluated the efficacy of ozagrel, a TXA2 synthase inhibitor, on the lung injury in guinea-pigs. Oleic acid injection increased the plasma level of TXB2, a stable metabolite of TXA2, and the time-course of plasma TXB2 was similar to that of the decreased partial oxygen pressure of arterial blood (Pao2) induced with oleic acid. Ozagrel administered intravenously 30 min before oleic acid injection prevented the decrease in Pao2 and pulmonary vascular hyper-permeability. It also prevented increases in lactate dehydrogenase activity, a measure of lung cell injury, TXB2 and its weight ratio to 6-keto prostaglandin F1 , in bronchoalveolar lavage fluid. Although ozagrel administered simultaneously with oleic acid ameliorated the decrease in Pao2, post treatment showed little effect. We suggest that TXA2 participated in the oleic acid lung injury, as an "early phase" mediator, and rapidly-acting TXA2 synthase inhibitors were effective in the prevention of acute lung injury. [source]


Angioedema after ovine hyaluronidase injection for treating hyaluronic acid overcorrection

JOURNAL OF COSMETIC DERMATOLOGY, Issue 2 2008
Pierre Andre MD
Summary Background, Hyaluronic acid injections are becoming popular in aesthetic dermatology, and, sometimes, misplacements and very rarely adverse events have been reported. Hyaluronidase, an enzyme that hydrolyzes hyaluronic acid, is used to treat overcorrection or granulomatous reactions. Allergic reactions are well known except for how frequent they occur. Objective, This paper aims to confirm the efficacy of hyaluronidase injections to dissolve hyaluronic acid, but insists on the risk of hypersensitivity with animal-derived products. Methods, A case of angioedema due to ovine hyaluronidase is reported, and treatment is discussed. Conclusion, Hyaluronidase is highly effective, but skin test must be done before injection to avoid risk of angioedema and/or Quincke's edema. [source]


Alterations in cerebral metabolism by the neurotoxin kainic acid studied by 13C MRS

JOURNAL OF NEUROCHEMISTRY, Issue 2002
E. Olstad
Kainic acid is a potent agonist at the kainate subclass of ionotropic glutamate receptors, and functional kainate receptors have not only been demonstrated on neurons but also on glial cells in culture. Kainic acid injections are used to induce limbic seizures in rodents. When combined with injections of [1-13C]glucose and [1,2-13C]acetate followed by analyses of forebrain extracts using 13C magnetic resonance spectroscopy (MRS) and HPLC information about glial neuronal interaction can be obtained. Using kainic acid treatment and 24 h later injection of 13C label a significant increase in label derived from [1,2-13C]acetate was observed in glutamine and glutamate. Label derived from [1-13C]glucose was unchanged in most metabolites, however, a decrease was observed in [2-13C]GABA. It should be noted that only astrocytes are able to utilize acetate as a substrate, whereas acetyl CoA derived from glucose is metabolized predominantly in the neuronal tricarboxylic acid cycle. These results indicate that turnover of metabolites was increased predominantly in astrocytes whereas glutamatergic neurons were not affected. However, GABAergic neurons showed decreased GABA labelling, possibly due to reduced GABA release 24 h after kainic acid injection. Taken together with results obtained 2 weeks after kainic acid injection, it can be suggested that increased astrocytic activity one day after epileptic seizures results, subsequently, in an increased amino acid turnover in neurons. Cell culture work was also performed, results will be presented at the meeting. [source]


Efficacy of phosphonic acid, metalaxyl-M and copper hydroxide against Phytophthora ramorum in vitro and in planta

PLANT PATHOLOGY, Issue 1 2009
M. Garbelotto
The ability of metalaxyl-M, phosphonic acid in the form of phosphonate, and copper hydroxide to inhibit different stages in the life cycle of Phytophthora ramorum, the causal agent of sudden oak death (SOD), was tested in vitro using 12 isolates from the North American forest lineage. In addition, experiments were conducted in planta to study the ability of phosphonic acid injections and metalaxyl-M drenches to control pathogen growth on saplings of California coast live oak (Quercus agrifolia), and of copper hydroxide foliar sprays to control infection of California bay laurel (Umbellularia californica) leaves. Phytophthora ramorum was only moderately sensitive to phosphonic acid in vitro, but was highly sensitive to copper hydroxide. In planta experiments indicated the broad efficacy of phosphonic acid injections and of copper hydroxide sprays in preventing growth of P. ramorum in oaks and bay laurels, respectively. Finally, although metalaxyl-M was effective in vitro, drenches of potted oak trees using this active ingredient were largely ineffective in reducing the growth rate of the pathogen in planta. [source]