Acid Differences (acid + difference)

Distribution by Scientific Domains

Kinds of Acid Differences

  • amino acid difference


  • Selected Abstracts


    Blood group antigens and immune responses,detailed knowledge is necessary to prevent immunization and to follow up immunized individuals

    ISBT SCIENCE SERIES: THE INTERNATIONAL JOURNAL OF INTRACELLULAR TRANSPORT, Issue n1 2010
    A. Husebekk
    Background The immune system is educated to detect and react with foreign antigens and to tolerate self-antigen. Transfusion of blood cells and plasma and pregnancies challenge the immune system by the introduction of foreign antigens. The antigens may cause an immune response, but in many instances this is not the case and the individual is not immunised after exposure of blood group antigens. Aims The aim of the presentation is to dissect some immune responses to blood group antigens in order to understand the mechanism of immunisation. Methods The results of immune responses to blood group antigens can be detected by the presence of antibodies to the antigens. If the antibodies are of IgG class, the activated B cells have received help from antigen specific T cells. Both antibodies, B cells and T cells can be isolated from immunised individuals and studied in the laboratory. Also B-cell receptors and T-cell receptors as well as MHC molecules on antigen presenting cells can be studied and models of the immune synapses can be created in vitro. Results The most classic immune responses in transfusion medicine and in incompatible pregnancies are immune responses to the RhD antigen on red cells, HLA class I molecules on white cells and platelets and human platelet antigens. The nature of these antigens are different; RhD antigens are part of a large complex, present on red cells from RhD positive individuals and completely lacking on red cells from RhD negative individuals. It is likely that many peptides derived from this antigen complex may stimulate T cells and B cells. HLA antigens are highly polymorphic and the antigens are known to induce strong alloimmune responses. The HPA antigens are created by one amino acid difference in allotypes based on a single nucleotide polymorphism at the genetic level. HPA 1a induce immune responses in 10% of HPA 1b homozygote pregnant women. The result of these immune responses is destruction of blood cells with clinical consequences connected to the effect of transfusions or the outcome of pregnancies. Summary/Conclusions Even though there is emerging knowledge about the immune responses to some of the blood group antigens, more information must be gained in order to understand the complete picture. The action of the innate immune response initiating the adaptive immune response to blood group antigens is not well understood. A detailed understanding of both the innate ad the adaptive part of the immune response is necessary to identify individuals at risk for immunisation and to prevent immunisation to blood group antigens. [source]


    A new panel of NS1 antibodies for easy detection and titration of influenza A virus,

    JOURNAL OF MEDICAL VIROLOGY, Issue 3 2010
    Zhihao Tan
    Abstract The non-structural protein NS1 of the influenza A virus is a good target for the development of diagnostic assays. In this study, three NS1 monoclonal antibodies (mAbs) were generated by using recombinant NS1 protein of H5N1 virus and found to bind both the native and denatured forms of NS1. Two of the mAbs, 6A4 and 2H6, bind NS1 of three different strains of influenza A virus, namely H1N1, H3N2, and H5N1. Epitope mapping revealed that residues 42,53 of H5N1 NS1 are essential for the interaction with both mAbs. Between the three strains, there is only one amino acid difference in this domain, which is consistent with the observed cross-reactivities. On the other hand, mAb 1G1 binds to residues 206,215 of H5N1 NS1 and does not bind NS1 of H1N1 or H3N2. Furthermore, all three mAbs detected NS1 proteins expressed in virus infected MDCK cells and indirect immunofluorescence staining with mAbs 6A4 and 2H6 provided an alternative method for viral titer determination. Quantifying the numbers of fluorescent foci units yielded viral titers for three different isolates of H5N1 virus that are highly comparable to that obtained by observing cytopathic effect induced by virus infection. Importantly, this alternative method yields results at 1 day post-infection while the conventional method using cytopathic effect yields results at 3 days post-infection. The results showed that this new panel of NS1 antibodies can detect NS1 protein expressed during viral infection and can be used for fast and easy titration of influenza A virus. J. Med. Virol. 82:467,475, 2010. © 2010 Wiley-Liss, Inc. [source]


    cDNA cloning of the housefly pigment-dispersing factor (PDF) precursor protein and its peptide comparison among the insect circadian neuropeptides

    JOURNAL OF PEPTIDE SCIENCE, Issue 2 2004
    Ayami Matsushima
    Abstract Pigment-dispersing factor (PDF), an 18-amino acid neuropeptide, is a principal circadian neurotransmitter for the circadian rhythms of the locomotor activity in flies. Recently, two completely different types of PDF precursor were clarified; that of the cricket Gryllus bimaculatus and that of the last-summer cicada Meimuna opalifera. The G. bimaculatus PDF precursor is extraordinarily short and comprises a nuclear localization signal (NLS), while the M. opalifera PDF precursor is of ordinary length, comparable to that seen for the precursors of crustacean ,-PDH homologues. Although their PDF peptide regions were exactly the same, the regions containing a signal peptide combined with a PDF-associated peptide (PAP) were remarkably different from each other. Such a grouping suggested a fundamental role for the PAP peptide in the circadian clock, perhaps associated with PDF function. In the present study, the cDNA cloning of PDF from the adult brains of the housefly Musca domestica was carried out and it was found that an isolated clone (527 bp) encodes a PDF precursor protein of ordinary length. The PDF peptide shows a high sequence identity (78%,94%) and similarity (89%,100%) to insect PDFs and also to the crustacean ,-PDH peptides. In particular, there is only a single amino acid difference between the PDFs of Musca and Drosophila; at position 14 Ser for Musca PDF and Asn for Drosophila PDF. A characteristic Ser10 in Drosophila was retained in Musca, indicating the presence of a structural profile unique to these PDFs. The results of sequence analyses suggest that Musca and Drosophila PDFs are to be considered members of a single group that has evolved structurally. When the primary structure of the PAP regions was compared, the Musca PDF precursor also belonged to the same group as that to which the Drosophila PDF precursor belongs. Copyright © 2003 European Peptide Society and John Wiley & Sons, Ltd. [source]


    Knocking out IL-6 by vaccination

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 1 2004
    Pia Galle
    Abstract Inappropriate expression of IL-6 plays a role in various inflammatory conditions, degenerative diseases, and cancers. Several model systems have been developed that can specifically block IL-6-receptor interactions. Here we present a simple and highly effective approach based on vaccination with a pool of specifically mutated IL-6 analogues to induce a neutralizing IL-6 antibody responsein mice. Judged by the ability of the analogues to bind to heterologous anti-IL-6 antibodies and cellular IL-6 receptors the IL-6 analogues seemed to have a three-dimensional structure comparable to that of wild-type IL-6. Injection of them broke self-tolerance and induced an immune response to IL-6, presumably because of the amino acid differences between the analogues and wild-type IL-6. This resulted in a long-lasting anti-IL-6 antibody-mediated IL-6 deficiency that blocked experimentally induced IL-6-mediated pathology. [source]


    Identification of a new genotype H wild-type mumps virus strain and its molecular relatedness to other virulent and attenuated strains

    JOURNAL OF MEDICAL VIROLOGY, Issue 2 2003
    Georgios Amexis
    Abstract A single clinical isolate of mumps virus designated 88-1961 was obtained from a patient hospitalized with a clinical history of upper respiratory tract infection, parotitis, severe headache, fever and lymphadenopathy. We have sequenced the full-length genome of 88-1961 and compared it against all available full-length sequences of mumps virus. Based upon its nucleotide sequence of the SH gene 88-1961 was identified as a genotype H mumps strain. The overall extent of nucleotide and amino acid differences between each individual gene and protein of 88-1961 and the full-length mumps samples showed that the missense to silent ratios were unevenly distributed. Upon evaluation of the consensus sequence of 88-1961, four positions were found to be clearly heterogeneous at the nucleotide level (NP 315C/T, NP 318C/T, F 271A/C, and HN 855C/T). Sequence analysis revealed that the amino acid sequences for the NP, M, and the L protein were the most conserved, whereas the SH protein exhibited the highest variability among the compared mumps genotypes A, B, and G. No identifying molecular patterns in the non-coding (intergenic) or coding regions of 88-1961 were found when we compared it against relatively virulent (Urabe AM9 B, Glouc1/UK96, 87-1004 and 87-1005) and non-virulent mumps strains (Jeryl Lynn and all Urabe Am9 A substrains). J. Med. Virol. 70: 284,286, 2003. © 2003 Wiley-Liss, Inc. [source]


    Concordance between semen-derived HIV-1 proviral DNA and viral RNA hypervariable region 3 (V3) envelope sequences in cases where semen populations are distinct from those present in blood

    JOURNAL OF MEDICAL VIROLOGY, Issue 1 2002
    Rebecca Curran
    Abstract Sequence analysis of the third hypervariable region (V3) of the envelope gene of the HIV-1 was carried out on HIV proviral and viral populations present in blood and semen. Phylogenetically distinct populations of virus were observed in three of the 10 patients analysed. Although the majority of the viruses were predicted to have an R5 phenotype, amino acid differences between blood and semen-derived virus and provirus sequences were observed at sites previously shown to affect cell tropism. Importantly, the semen proviral population was representative of that observed for cell-free virus. This indicates that seminal fluid mononuclear cells are possible sources for the cell-free virus in found in semen. J. Med. Virol. 67:9,19, 2002. © 2002 Wiley-Liss, Inc. [source]


    Evidence for the adaptive evolution of the carbon fixation gene rbcL during diversification in temperature tolerance of a clade of hot spring cyanobacteria

    MOLECULAR ECOLOGY, Issue 5 2003
    S. R. Miller
    Abstract Determining the molecular basis of enzyme adaptation is central to understanding the evolution of environmental tolerance but is complicated by the fact that not all amino acid differences between ecologically divergent taxa are adaptive. Analysing patterns of nucleotide sequence evolution can potentially guide the investigation of protein adaptation by identifying candidate codon sites on which diversifying selection has been operating. Here, I test whether there is evidence for molecular adaptation of the carbon fixation gene rbcL for a clade of hot spring cyanobacteria in the genus Synechococcus that has diverged in thermotolerance. Amino acid replacements during Synechococcus radiation have resulted in an increase in the number of hydrophobic residues in the RbcLs of more thermotolerant strains. A similar increase in hydrophobicity has been observed for many thermostable proteins. Maximum likelihood models which allow for heterogeneity among codon sites in the ratio of nonsynonymous to synonymous nucleotide substitutions estimated a class of amino acid sites as a target of positive selection. Depending on the model, a single amino acid site that interacts with a flexible element involved in the opening and closing of the active site was estimated with either low or moderate support to be a member of this class. Site-directed mutagenesis approaches are being explored in order to directly test its adaptive significance. [source]


    Structure and reactivity of Trypanosoma brucei pteridine reductase: inhibition by the archetypal antifolate methotrexate

    MOLECULAR MICROBIOLOGY, Issue 6 2006
    Alice Dawson
    Summary The protozoan Trypanosoma brucei has a functional pteridine reductase (TbPTR1), an NADPH-dependent short-chain reductase that participates in the salvage of pterins, which are essential for parasite growth. PTR1 displays broad-spectrum activity with pterins and folates, provides a metabolic bypass for inhibition of the trypanosomatid dihydrofolate reductase and therefore compromises the use of antifolates for treatment of trypanosomiasis. Catalytic properties of recombinant TbPTR1 and inhibition by the archetypal antifolate methotrexate have been characterized and the crystal structure of the ternary complex with cofactor NADP+ and the inhibitor determined at 2.2 Å resolution. This enzyme shares 50% amino acid sequence identity with Leishmania major PTR1 (LmPTR1) and comparisons show that the architecture of the cofactor binding site, and the catalytic centre are highly conserved, as are most interactions with the inhibitor. However, specific amino acid differences, in particular the placement of Trp221 at the side of the active site, and adjustment of the ,6-,6 loop and ,6 helix at one side of the substrate-binding cleft significantly reduce the size of the substrate binding site of TbPTR1 and alter the chemical properties compared with LmPTR1. A reactive Cys168, within the active site cleft, in conjunction with the C-terminus carboxyl group and His267 of a partner subunit forms a triad similar to the catalytic component of cysteine proteases. TbPTR1 therefore offers novel structural features to exploit in the search for inhibitors of therapeutic value against African trypanosomiasis. [source]


    Development of H1e histone linker-specific antibodies by means of synthetic peptides

    CHEMICAL BIOLOGY & DRUG DESIGN, Issue 1 2004
    K. Foulon
    Abstract:, A large body of data suggests that the linker histones family (H1) affects gene expression. Investigation of the linker histones role is then of a major interest in cell cycle studies with implications in gene therapy. Indeed, it has been shown that in most tissues a switch of histone subtypes occurs when the cells cease to divide. To investigate linker histone role in gene or transgene expression, an antibody against subtypes of H1 would be useful for immunoprecipitation experiments and further assays measuring H1subtypes,DNA interactions in living cells. In order to produce an antibody against the H1e subtype of linker histones, two synthetic peptides derived from two regions of the H1e mouse histone protein were examined for their potential, [as keyhole limpet hemocyanin (KLH) conjugates] to elicit polyclonal anti-H1e antibodies in New Zealand white rabbits. Selection of the peptide sequences was based on amino acid differences within the different classes of histones and between mice and rabbit histones as well. The evaluation of their potential immunogenic properties was based on examination of peptide hydropathy using predicting algorithms. Immunoglobulins (IgG) obtained from immunized and nonimmunized rabbits were tested using enzyme-linked immunosorbent assay (ELISA) procedures, Western immunoblot, and immunofluorescence experiments. Results showed that the selected synthetic peptides gave rise to a high-titer polyclonal antibody able to recognize the H1e histone under various conditions. This polyclonal antibody did not cross-react with other histones. To our knowledge, this is the first antibody produced against the mouse H1e linker histone. [source]